New Tool To Monitor Biofilm Growth in Industrial Process Waters
dc.contributor.author | Blanco Suárez, María Ángeles | |
dc.contributor.author | Torres, Esperanza | |
dc.contributor.author | Fuente González, Elena de la | |
dc.contributor.author | Negro Álvarez, Carlos Manuel | |
dc.date.accessioned | 2023-06-20T03:43:45Z | |
dc.date.available | 2023-06-20T03:43:45Z | |
dc.date.issued | 2011 | |
dc.description.abstract | A new online methodology based on a continuous process video microscopy and image analysis has been developed to study the effects of enzymes on the formation of biofilm. This research consists of two parts: (1) the monitoring of the growth of a biofilm formed with the axenic culture isolated from the process waters of a recycling paper mill, aiming at determining the most appropriate way to quantify the biofilm growth from the obtained images; and (2) the study of the effects of three new enzymatic products on biofilm formation involving the natural flora of microorganisms present in the process water of the paper mill. The results demonstrate that the new methodology based on image analysis allows monitoring of the formation of biofilm and selecting the most efficient biofilm control product. The study also shows that enzymatic products could be an alternative for biocides on biofilm prevention and control. | |
dc.description.department | Depto. de Ingeniería Química y de Materiales | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26429 | |
dc.identifier.citation | Blanco, Angeles, et al. «New Tool To Monitor Biofilm Growth in Industrial Process Waters». Industrial & Engineering Chemistry Research, vol. 50, n.o 9, mayo de 2011, pp. 5766-73. DOI.org (Crossref), https://doi.org/10.1021/ie101422m. | |
dc.identifier.doi | 10.1021/ie101422m | |
dc.identifier.issn | 0888-5885 | |
dc.identifier.officialurl | https://doi.org/10.1021/ie101422m. | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44332 | |
dc.issue.number | 9 | |
dc.journal.title | Industrial & Engineering Chemistry Research | |
dc.language.iso | eng | |
dc.page.final | 5773 | |
dc.page.initial | 5766 | |
dc.publisher | American Chemical Society | |
dc.relation.hasversion | AM | |
dc.relation.projectID | AQUAFIT4USE (211534) | |
dc.relation.projectID | Eco-efficient Novel Enzymatic Concepts (GRDI-2000-25676) | |
dc.relation.projectID | PROLIPAPEL II-CM (S2009/AMB-1480) | |
dc.relation.projectID | AGUA Y ENERGÍA (CTM2008-06886-C02-01) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 676 | |
dc.subject.cdu | 66 | |
dc.subject.keyword | Biofilm monitoring | |
dc.subject.keyword | Biofilm control | |
dc.subject.keyword | Particle videomicroscopy | |
dc.subject.keyword | Enzymatic control | |
dc.subject.ucm | Industria del papel | |
dc.subject.ucm | Ingeniería química | |
dc.subject.ucm | Medio ambiente | |
dc.subject.ucm | Biotecnología | |
dc.subject.unesco | 3312.13 Tecnología de la Madera | |
dc.subject.unesco | 3303 Ingeniería y Tecnología Químicas | |
dc.subject.unesco | 2391 Química Ambiental | |
dc.subject.unesco | 3399 Otras Especialidades Tecnológicas | |
dc.title | New Tool To Monitor Biofilm Growth in Industrial Process Waters | |
dc.type | journal article | |
dc.volume.number | 50 | |
dcterms.references | (1) Verhoef, R.; Schols, H.A.; Blanco, A.; Siika-aho, M.; Ratto, M.; Buchert, J.; Lenon, G.; Voragen, A.G.J. Sugar composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper mill biofilm deposits. Biot. Bioeng. 2005, 91(1), 91-105. (2) Ratto, M.; Verhoef, R.; Suihko; M.L.; Blanco, A.; Schols, H.A.; Voragen, A.G.J.; Wilting, R.; Buchert, J. Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J. Ind. Microbiol. Biot. 2006, 33(5), 359-367. (3) Characklis, W.; Marshall, K. Biofilms and microbial fouling. Adv. Appl. Microbio. 1990, 29, 93-138. (4) Videla, H. Prevention and control of biocorrosion. Int. Biodeterior. Biodegrad. 2002, 49, 259-270. (5) Lahtinen, T.; Kosonen, M.; Tiirola, M.; Vuento, M.; Oker-Blom, C. Diversity of bacteria contaminating paper machines. J. Ind. Microbiol. Biotech. 2006, 33(9), 734-740. (6) Kolari, M.; Nuutinen, J.; Rainey, F.A.; Salkinoja-Salonen, M.S. Colored moderately thermophilic bacteria in paper-machine biofilms. J. Ind. Microbiol. Biotech. 2003, 30(4), 225-238. (7) Blanco, M.A.; Negro, C.; Gaspar, I.; Tijero, J. Slime problems in the paper and board industry. Appl. Microbiol. Biot. 1996, 46(3), 203-208. (8) Blanco, A. Microbiology in papermaking. Recent Res Dev Appl Microbio Biot. 2003,1- 87. (9) Blanco, A.; Negro, C.; Monte, C.; Fuente, E.; Tijero, J. The challenges of sustainable papermaking. Environ. Sci. Tech. 2004, 38(21), 414A-420A. (10) Ludensky, M. Control and monitoring of biofilms in industrial applications. International. Biodeter. Biodegrad. 2003, 51, 255-263. (11) Momba, M.; Kfir, R.; Venter, S.; Cloete, T. An overview of biofilm formation in distribution system and its impact on the deterioration of water quality. Water S.A. 2000, 26, 59-66. (12) Klahre, J.; Flemming, H. Monitoring of biofouling in papermill process waters. Water Res. 2000, 34(14), 3657-3665. (13) Patching, J.W.; Fleming, H.C. Industrial biofilms: formation, problems and control. In: Lens, P.; Moran, A.P.; Mahony, T.; Stoodley P.; O'Flaherty, V. Editors. Biofilms in Medicine, Industrial Environmental Biotechnology. IWA Publishing, UK. 2003, 568–572. (14) Flemming, H.C.; Tamachkiarowa, A.; Klahre, J.; Schmitt, J. Monitoring of fouling and biofouling in technical systems. Water Sci. Technol. 1998, 38(8), 291-298. (15) Simoes, M.; Simoes, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT - Food Sci. Technol. 2010, 43(4), 573-583. (16) Shi, X.; Zhu, X. Biofilm formation and food safety in food industries. Trends food Sci. Technol. 2009, 20(9), 407-413. (17) Meyer, B. Approaches to prevention, removal and killing of biofilms. Int. Biodeter. Biodegrad. 2003, 51(4), 249-253. (18) Torres, C.E.; Gibello, A.; Nande, M.; Martin, M.; Blanco, A. Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills. Appl. Microbiol. Biot. 2008, 78, 889-897. (19) Costerton, J.; Lewandowski, Z.; Caldwell, D.; Korber, D.; Lappin-Scott, H. Microbial biofilms Annu. Rev. Microb. 1995, 49, 711-745. (20) Ludensky, M. An automated system for biocide test-ring on biofilms. J. Ind.Microbiol. Biot. 1998, 20, 109-115. (21) Wirtanen, G.; Salo, S.; Helander, I.; Mattila-Shaldom, T. Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloid Surface B. 2001, 20, 37-50. (22) Chavant, P.; Gaillard-Martinie, B.; Talon, R.; Hebraud, M.; Bernardi, T. A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol.Method. 2007, 68, 605-612. (23) Hadjiev, D.; Dimitrov, D.; Martinov, M.; Sire O. Enhancement of the biofilm formation on polymeric supports by surface conditioning. Enzyme Microb. Tech. 2007, 40, 840-848. (24) Christensen, B.; Sternberg, C.; Andersen, J.; Palmer, R.; Nielsen, A.; Givskov, M.; Molin, S. Molecular tools for study of biofilm physiology. Method. Enzymol. 1999, 310, 20-42. (25) Jass, J.; Costerton, J.; Lappin-Scott, H. Assessment of a chemostat-coupled modified Robbins device to study biofilms. J. Ind. Microbiol. Biot. 1995, 15, 238-289. (26) Morris, C.; Monier, J.; Jacques, M. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol. 1997, 63, 1570-1576. (27) Tamachkiarw, A.; Flemming, H. On line monitoring formation in a brewery water pipeline system with a fibre optical device. Water Sci. Technol. 2003, 47, 19-24. (28) Chandy, R.; Scully, P.; Eldridge, P.; Kadim, H.; Grapin, M.; Guy, M.; D´Ambrosio, M.; Colin, F. An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J. Sel. Top. Quant. 2000, 6(5), 764-762. (29) Janknecht, P.; Melo, L. On line biofilm monitoring. Rev. Environ. Sci. Biotech. 2003, 2, 269-283. (30) Ramaraja, P.; Ren, Z.; Mench, M.; Reagan, J. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotech. Bioeng. 2008, 101, 101-108. (31) Mauricio, R.; Dias, C.J.; Santana, F. Monitoring biofilm thickness using a nondestructive, on-line, electrical capacitance technique. Env. Monit. Assess. 2006, 119, 599-607. (32) Kougoulos, E.; Jones, A.G.; Jennings, K.H.; Wood-Kaczmar, M.W. Use of focused beam reflectance measurement (FBRM) and process video imaging (PVM) in a modified mixed suspension mixed product removal (MSMPR) cooling crystallizer. J. Cryst. Growth. 2005, 273, 529-534. (33) Negro, C.; Fuente, E.; Sanchez, L.M.; Blanco, A.; Tijero, J. Evaluation of an Alternative Flocculation System for Manufacture of Fiber-Cement Composites. Ind. Eng. Chem. Res. 2006, 45, 6672-6678. (34) Negro, C.; Fuente, E.; Sanchez, L.M.; Blanco, A.; Tijero, J. Polyacrylamide induced flocculation of a cement suspension. Chem. Eng. Sci. 2006, 61, 2522-2532. (35) Hamann, O.S.; Montague, T.W.; Reed, B.W.; Hokanson, J.V. Imaging apparatus of multiphase fluid medium - has image detector with CCD array which outputs image to electronics package, for suitable conversion. Pattent number: WO9845682-A. 1998. (36) Pedersen, K. Method for Studying Microbial Biofilms in Flowing Water Systems. Appl. Environ. Microbiol. 1982, 43(1), 6-13. (37) Costerton, J.W.; Lewandowski, Z.; Debeer, D.; Caldwell, D.; Korber, D.; James, G. Biofilms, the Customized Microniche. J. Bacteriol. 1994, 176(8), 2137-2142. (38) Torres, E.; Blanco, A.; Fuente, E.; Negro, C. Slime forming microorganisms monitoring in the paper industry. 4th International meeting on biotechnology, towards asustainable bioeconomy, Biotec 2008, Granada, Spain, September 17-19, 2008, 169. (39) Jensen, A.; Larsen, M.; Ingmer, H.; Vogel, B.; Gram, L. Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of Listeria monocytogenes strains. J. Food Protection. 2007, 70, 592-599, (40) Carpentier, B.; Chassaing, D. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int. J. Food Microbiol. 2004. 97, 111-122. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 04f905d2-6294-4530-9d01-062828ddefb2 | |
relation.isAuthorOfPublication | 505f3b47-3120-4526-a703-f45b3e7cf73c | |
relation.isAuthorOfPublication | 70170cd9-21de-4871-a7fe-b2ad29053b15 | |
relation.isAuthorOfPublication.latestForDiscovery | 04f905d2-6294-4530-9d01-062828ddefb2 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- New_tool_to_monitor_biofilm.pdf
- Size:
- 351.32 KB
- Format:
- Adobe Portable Document Format