Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Tool To Monitor Biofilm Growth in Industrial Process Waters

dc.contributor.authorBlanco Suárez, María Ángeles
dc.contributor.authorTorres, Esperanza
dc.contributor.authorFuente González, Elena de la
dc.contributor.authorNegro Álvarez, Carlos Manuel
dc.date.accessioned2023-06-20T03:43:45Z
dc.date.available2023-06-20T03:43:45Z
dc.date.issued2011
dc.description.abstractA new online methodology based on a continuous process video microscopy and image analysis has been developed to study the effects of enzymes on the formation of biofilm. This research consists of two parts: (1) the monitoring of the growth of a biofilm formed with the axenic culture isolated from the process waters of a recycling paper mill, aiming at determining the most appropriate way to quantify the biofilm growth from the obtained images; and (2) the study of the effects of three new enzymatic products on biofilm formation involving the natural flora of microorganisms present in the process water of the paper mill. The results demonstrate that the new methodology based on image analysis allows monitoring of the formation of biofilm and selecting the most efficient biofilm control product. The study also shows that enzymatic products could be an alternative for biocides on biofilm prevention and control.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26429
dc.identifier.citationBlanco, Angeles, et al. «New Tool To Monitor Biofilm Growth in Industrial Process Waters». Industrial & Engineering Chemistry Research, vol. 50, n.o 9, mayo de 2011, pp. 5766-73. DOI.org (Crossref), https://doi.org/10.1021/ie101422m.
dc.identifier.doi10.1021/ie101422m
dc.identifier.issn0888-5885
dc.identifier.officialurlhttps://doi.org/10.1021/ie101422m.
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44332
dc.issue.number9
dc.journal.titleIndustrial & Engineering Chemistry Research
dc.language.isoeng
dc.page.final5773
dc.page.initial5766
dc.publisherAmerican Chemical Society
dc.relation.hasversionAM
dc.relation.projectIDAQUAFIT4USE (211534)
dc.relation.projectIDEco-efficient Novel Enzymatic Concepts (GRDI-2000-25676)
dc.relation.projectIDPROLIPAPEL II-CM (S2009/AMB-1480)
dc.relation.projectIDAGUA Y ENERGÍA (CTM2008-06886-C02-01)
dc.rights.accessRightsopen access
dc.subject.cdu676
dc.subject.cdu66
dc.subject.keywordBiofilm monitoring
dc.subject.keywordBiofilm control
dc.subject.keywordParticle videomicroscopy
dc.subject.keywordEnzymatic control
dc.subject.ucmIndustria del papel
dc.subject.ucmIngeniería química
dc.subject.ucmMedio ambiente
dc.subject.ucmBiotecnología
dc.subject.unesco3312.13 Tecnología de la Madera
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco2391 Química Ambiental
dc.subject.unesco3399 Otras Especialidades Tecnológicas
dc.titleNew Tool To Monitor Biofilm Growth in Industrial Process Waters
dc.typejournal article
dc.volume.number50
dcterms.references(1) Verhoef, R.; Schols, H.A.; Blanco, A.; Siika-aho, M.; Ratto, M.; Buchert, J.; Lenon, G.; Voragen, A.G.J. Sugar composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper mill biofilm deposits. Biot. Bioeng. 2005, 91(1), 91-105. (2) Ratto, M.; Verhoef, R.; Suihko; M.L.; Blanco, A.; Schols, H.A.; Voragen, A.G.J.; Wilting, R.; Buchert, J. Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J. Ind. Microbiol. Biot. 2006, 33(5), 359-367. (3) Characklis, W.; Marshall, K. Biofilms and microbial fouling. Adv. Appl. Microbio. 1990, 29, 93-138. (4) Videla, H. Prevention and control of biocorrosion. Int. Biodeterior. Biodegrad. 2002, 49, 259-270. (5) Lahtinen, T.; Kosonen, M.; Tiirola, M.; Vuento, M.; Oker-Blom, C. Diversity of bacteria contaminating paper machines. J. Ind. Microbiol. Biotech. 2006, 33(9), 734-740. (6) Kolari, M.; Nuutinen, J.; Rainey, F.A.; Salkinoja-Salonen, M.S. Colored moderately thermophilic bacteria in paper-machine biofilms. J. Ind. Microbiol. Biotech. 2003, 30(4), 225-238. (7) Blanco, M.A.; Negro, C.; Gaspar, I.; Tijero, J. Slime problems in the paper and board industry. Appl. Microbiol. Biot. 1996, 46(3), 203-208. (8) Blanco, A. Microbiology in papermaking. Recent Res Dev Appl Microbio Biot. 2003,1- 87. (9) Blanco, A.; Negro, C.; Monte, C.; Fuente, E.; Tijero, J. The challenges of sustainable papermaking. Environ. Sci. Tech. 2004, 38(21), 414A-420A. (10) Ludensky, M. Control and monitoring of biofilms in industrial applications. International. Biodeter. Biodegrad. 2003, 51, 255-263. (11) Momba, M.; Kfir, R.; Venter, S.; Cloete, T. An overview of biofilm formation in distribution system and its impact on the deterioration of water quality. Water S.A. 2000, 26, 59-66. (12) Klahre, J.; Flemming, H. Monitoring of biofouling in papermill process waters. Water Res. 2000, 34(14), 3657-3665. (13) Patching, J.W.; Fleming, H.C. Industrial biofilms: formation, problems and control. In: Lens, P.; Moran, A.P.; Mahony, T.; Stoodley P.; O'Flaherty, V. Editors. Biofilms in Medicine, Industrial Environmental Biotechnology. IWA Publishing, UK. 2003, 568–572. (14) Flemming, H.C.; Tamachkiarowa, A.; Klahre, J.; Schmitt, J. Monitoring of fouling and biofouling in technical systems. Water Sci. Technol. 1998, 38(8), 291-298. (15) Simoes, M.; Simoes, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT - Food Sci. Technol. 2010, 43(4), 573-583. (16) Shi, X.; Zhu, X. Biofilm formation and food safety in food industries. Trends food Sci. Technol. 2009, 20(9), 407-413. (17) Meyer, B. Approaches to prevention, removal and killing of biofilms. Int. Biodeter. Biodegrad. 2003, 51(4), 249-253. (18) Torres, C.E.; Gibello, A.; Nande, M.; Martin, M.; Blanco, A. Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills. Appl. Microbiol. Biot. 2008, 78, 889-897. (19) Costerton, J.; Lewandowski, Z.; Caldwell, D.; Korber, D.; Lappin-Scott, H. Microbial biofilms Annu. Rev. Microb. 1995, 49, 711-745. (20) Ludensky, M. An automated system for biocide test-ring on biofilms. J. Ind.Microbiol. Biot. 1998, 20, 109-115. (21) Wirtanen, G.; Salo, S.; Helander, I.; Mattila-Shaldom, T. Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloid Surface B. 2001, 20, 37-50. (22) Chavant, P.; Gaillard-Martinie, B.; Talon, R.; Hebraud, M.; Bernardi, T. A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol.Method. 2007, 68, 605-612. (23) Hadjiev, D.; Dimitrov, D.; Martinov, M.; Sire O. Enhancement of the biofilm formation on polymeric supports by surface conditioning. Enzyme Microb. Tech. 2007, 40, 840-848. (24) Christensen, B.; Sternberg, C.; Andersen, J.; Palmer, R.; Nielsen, A.; Givskov, M.; Molin, S. Molecular tools for study of biofilm physiology. Method. Enzymol. 1999, 310, 20-42. (25) Jass, J.; Costerton, J.; Lappin-Scott, H. Assessment of a chemostat-coupled modified Robbins device to study biofilms. J. Ind. Microbiol. Biot. 1995, 15, 238-289. (26) Morris, C.; Monier, J.; Jacques, M. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol. 1997, 63, 1570-1576. (27) Tamachkiarw, A.; Flemming, H. On line monitoring formation in a brewery water pipeline system with a fibre optical device. Water Sci. Technol. 2003, 47, 19-24. (28) Chandy, R.; Scully, P.; Eldridge, P.; Kadim, H.; Grapin, M.; Guy, M.; D´Ambrosio, M.; Colin, F. An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J. Sel. Top. Quant. 2000, 6(5), 764-762. (29) Janknecht, P.; Melo, L. On line biofilm monitoring. Rev. Environ. Sci. Biotech. 2003, 2, 269-283. (30) Ramaraja, P.; Ren, Z.; Mench, M.; Reagan, J. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotech. Bioeng. 2008, 101, 101-108. (31) Mauricio, R.; Dias, C.J.; Santana, F. Monitoring biofilm thickness using a nondestructive, on-line, electrical capacitance technique. Env. Monit. Assess. 2006, 119, 599-607. (32) Kougoulos, E.; Jones, A.G.; Jennings, K.H.; Wood-Kaczmar, M.W. Use of focused beam reflectance measurement (FBRM) and process video imaging (PVM) in a modified mixed suspension mixed product removal (MSMPR) cooling crystallizer. J. Cryst. Growth. 2005, 273, 529-534. (33) Negro, C.; Fuente, E.; Sanchez, L.M.; Blanco, A.; Tijero, J. Evaluation of an Alternative Flocculation System for Manufacture of Fiber-Cement Composites. Ind. Eng. Chem. Res. 2006, 45, 6672-6678. (34) Negro, C.; Fuente, E.; Sanchez, L.M.; Blanco, A.; Tijero, J. Polyacrylamide induced flocculation of a cement suspension. Chem. Eng. Sci. 2006, 61, 2522-2532. (35) Hamann, O.S.; Montague, T.W.; Reed, B.W.; Hokanson, J.V. Imaging apparatus of multiphase fluid medium - has image detector with CCD array which outputs image to electronics package, for suitable conversion. Pattent number: WO9845682-A. 1998. (36) Pedersen, K. Method for Studying Microbial Biofilms in Flowing Water Systems. Appl. Environ. Microbiol. 1982, 43(1), 6-13. (37) Costerton, J.W.; Lewandowski, Z.; Debeer, D.; Caldwell, D.; Korber, D.; James, G. Biofilms, the Customized Microniche. J. Bacteriol. 1994, 176(8), 2137-2142. (38) Torres, E.; Blanco, A.; Fuente, E.; Negro, C. Slime forming microorganisms monitoring in the paper industry. 4th International meeting on biotechnology, towards asustainable bioeconomy, Biotec 2008, Granada, Spain, September 17-19, 2008, 169. (39) Jensen, A.; Larsen, M.; Ingmer, H.; Vogel, B.; Gram, L. Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of Listeria monocytogenes strains. J. Food Protection. 2007, 70, 592-599, (40) Carpentier, B.; Chassaing, D. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int. J. Food Microbiol. 2004. 97, 111-122.
dspace.entity.typePublication
relation.isAuthorOfPublication04f905d2-6294-4530-9d01-062828ddefb2
relation.isAuthorOfPublication505f3b47-3120-4526-a703-f45b3e7cf73c
relation.isAuthorOfPublication70170cd9-21de-4871-a7fe-b2ad29053b15
relation.isAuthorOfPublication.latestForDiscovery04f905d2-6294-4530-9d01-062828ddefb2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New_tool_to_monitor_biofilm.pdf
Size:
351.32 KB
Format:
Adobe Portable Document Format

Collections