Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On two complementary types of total time derivative in classical field theories and Maxwell's equations

dc.contributor.authorSmirnov Rueda, Román
dc.date.accessioned2023-06-20T10:33:12Z
dc.date.available2023-06-20T10:33:12Z
dc.date.issued2005-10
dc.descriptionThe author thanks the referees for their valuable remarks
dc.description.abstractClose insight into mathematical and conceptual structure of classical field theories shows serious inconsistencies in their common basis. In other words, we claim in this work to have come across two severe mathematical blunders in the very foundations of theoretical hydrodynamics. One of the defects concerns the traditional treatment of time derivatives in Eulerian hydrodynamic description. The other one resides in the conventional demonstration of the so-called Convection Theorem. Both approaches are thought to be necessary for cross-verification of the standard differential form of continuity equation. Any revision of these fundamental results might have important implications for all classical field theories. Rigorous reconsideration of time derivatives in Eulerian description shows that it evokes Minkowski metric for any flow field domain without any previous postulation. Mathematical approach is developed within the framework of congruences for general 4-dimensional differentiable manifold and the final result is formulated in form of a theorem. A modified version of the Convection Theorem provides a necessary cross- verification for a reconsidered differential form of continuity equation. Although the approach is developed for one-component (scalar) flow field, it can be easily generalized to any tensor field. Some possible implications for classical electrodynamics are also explored.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20128
dc.identifier.doi10.1007/s10701-005-6515-8
dc.identifier.issn0015-9018
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs10701-005-6515-8?LI=true#page-1
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.relatedurlhttp://arxiv.org/abs/physics/0510013
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50472
dc.issue.number10
dc.journal.titleFoundations of Physics
dc.language.isoeng
dc.page.final1723
dc.page.initial1695
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu530.1
dc.subject.keywordFinal Cauchy problem
dc.subject.keywordContinuity equation
dc.subject.keywordConvection theorem
dc.subject.keywordFluid quantity
dc.subject.keywordMaxwell’s equations.
dc.subject.ucmFísica matemática
dc.titleOn two complementary types of total time derivative in classical field theories and Maxwell's equations
dc.typejournal article
dc.volume.number35
dcterms.referencesL. Euler, Hist. de l’Acad. de Berlin, 11 274–315 (1755). M. Kline, Mathematics: The Loss of Certainty (Oxford University Press, New York, 1980). M. Kline, Mathematical Thought from Ancient to Modern Times, Vol. 2 (Oxford University Press, New York, 1972). R. E. Meyer, Introduction to Mathematical Fluid Dynamics (Wiley, 1972). B. Dubrovin, S. Novikov, and A. Fomenko, Modern Geometry, Vol. 1 (Ed. Mir, Moscow, 1982). A.E.Chubykalo and R.Smirnov-Rueda,Mod.Phys. Lett. A 12(1) 1 (1997). A. E. Chubykalo, R. A. Flores, and J. A. Perez, Proceedings of the International Congress,‘Lorentz Group, CPT and Neutrino’, Zacatecas University (Mexico,1997)pp.384. A.E.Chubykalo and R.Alvarado-Flores,Hadronic J.25159 (2002) A. Chubykalo, A. Espinoza, and R. Flores-Alvarado, Hadronic J. 27(6) 625 (2004). G. K. Batchelor, Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967). L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Nauka, Moscow, 1973). A.E.Chubykalo and R. Smirnov-Rueda, Phys. Rev. E 53(5) 5373 (1996). A.E.Chubykalo and R. Smirnov-Rueda, Phys. Rev. E 57(3) 3683 (1998). R. Smirnov-Rueda, Found. Phys. 35(1) 1 (2005). A. Chubykalo, A. Espinoza, V. Onoochin, and R. Smirnov-Rueda, eds., Has the Last Word Been Said on Classical Electrodynamics?New Horizons(Rinton Press,Princeton,2004) V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974).
dspace.entity.typePublication
relation.isAuthorOfPublication5f81ed85-2b60-4901-8618-011d4bca5d9c
relation.isAuthorOfPublication.latestForDiscovery5f81ed85-2b60-4901-8618-011d4bca5d9c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smirnov04abierto.pdf
Size:
250.76 KB
Format:
Adobe Portable Document Format

Collections