Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Non-local separable solutions of two interacting particles in a harmonic trap

dc.contributor.authorGonzález-Santander de la Cruz, Clara
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T03:54:59Z
dc.date.available2023-06-20T03:54:59Z
dc.date.issued2011-01-17
dc.description©2010 Elsevier B.V. All rights reserved. The authors thank J. M. R. Parrondo for discussions. This work was supported by MICINN (projects Mosaico and MAT2010-17180). C. G.-S. acknowledges financial support from Comunidad de Madrid and European Social Foundation.
dc.description.abstractWe calculate the energy levels of two particles trapped in a harmonic potential. The actual two-body potential, assumed to be spherically symmetric, is replaced by a projective operator (non-local separable potential) to determine the energy levels in a closed form. This approach overcomes the limitations of the regularized Fermi pseudopotential when the characteristic length of the two-body interaction potential is of the order of the size of the harmonic trap. In addition, we recover the results obtained with the Fermi pseudopotential when the length of the interaction is much smaller than the size of the trap.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Social Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31077
dc.identifier.doi10.1016/j.physleta.2010.12.013
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physleta.2010.12.013
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44664
dc.issue.number3
dc.journal.titlePhysics letters A
dc.language.isoeng
dc.page.final317
dc.page.initial314
dc.publisherElsevier
dc.relation.projectIDMAT2010-17180
dc.relation.projectIDMosaico
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordModels
dc.subject.keywordLattice
dc.subject.keywordState
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleNon-local separable solutions of two interacting particles in a harmonic trap
dc.typejournal article
dc.volume.number375
dcterms.references[1] T. Stöferle, H. Moritz, K. Günter, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 96, 030401 (2006). [2] T. Busch, B.-G. Englert, K. Rza̡żewski, and M. Wilkens, Found. Physics 28, 549 (1998). [3] Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and their Applications in Atomic Physics (Plenum Press, New York, 1998). [4] E. Tiesinga, C. J. Williams, F. H. Mies, and P. S. Julienne, Phys. Rev. A 61, 063416 (2000). [5] M. Köhl, K. Günter, T. Stöferle, H. Moritz, and T. Esslinger, J. Phys. B: At. Mol. Opt. Phys. 39, S47 (2006). [6] E. Capelas de Oliveira, Rev. Bra. Fis. 3, 697 (1979). [7] M. L. Glasser, Surf. Sci. 64, 141 (1977) [8] W. van Dijk, Phys. Rev. C 40, 1437 (1989). [9] T. Gherghetta and Y. Nambu, Int. J. Mod. Phys. 8, 3163 (1993) [10] F. Domínguez-Adame, E. Diez, and A. Sánchez, Phys. Rev. B 51, 8115 (1995). [11] W. van Dijk, M. W. Kermode, and S. A. Moskkowski, J. Phys. A: Math. Gen. 31, 9571 (1998). [12] C. González-Santander and F. Domínguez-Adame, Physica E 41, 1645 (2009). [13] B. W. Knight and G. A. Peterson, Phys. Rev. 132, 1085 (1963). [14] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). [15] S. López and F. Domínguez-Adame, Semicond. Sci. Technol. 17, 227 (2002). [16] V. L. Bakhrakh and S. I. Vetchinkin, Theor. Math. Phys. 6, 283 (1971). [17] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame20POSTPRINT.pdf
Size:
309.7 KB
Format:
Adobe Portable Document Format

Collections