Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Radially excited rotating black holes in Einstein-Maxwell-Chern-Simons theory

dc.contributor.authorBlázquez Salcedo, José Luis
dc.contributor.authorKunz, Jutta
dc.contributor.authorNavarro Lerida, Francisco
dc.contributor.authorRadu, Eugen
dc.date.accessioned2023-06-18T06:48:04Z
dc.date.available2023-06-18T06:48:04Z
dc.date.issued2015-08-17
dc.description© 2015 American Physical Society. We gratefully acknowledge support by the DFG Research Training Group 1620 "Models of Gravity" and by the Spanish Ministerio de Ciencia e Innovacion, research Project No. FIS2011-28013. The work of E. R. is supported by the FCT-IF programme and the CIDMA strategic Project No. UID/MAT/04106/2013.
dc.description.abstractRotating black holes in Einstein-Maxwell-Chern-Simons theory possess remarkable features when the Chern-Simons coupling constant reaches a critical value. Representing single asymptotically flat black holes with horizons of spherical topology, they exhibit nonuniqueness. In particular, there even exist extremal and nonextremal black holes with the same sets of global charges. Both extremal and nonextremal black holes form sequences of radially excited solutions that can be labeled by the node number of the magnetic gauge potential function. The extremal Reissner-Nordstrm solution is no longer always located on the boundary of the domain of existence of these black holes, nor does it remain the single extremal solution with vanishing angular momentum. Instead a whole sequence of rotating extremal J = 0 solutions is present, whose mass converges towards the mass of the Reissner-Nordstrm solution. These radially excited extremal solutions are all associated with the same near horizon solution. Moreover, there are near horizon solutions that are not realized as global solutions.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MICINN)
dc.description.sponsorshipDFG Research Training Group "Models of Gravity
dc.description.sponsorshipFCT-IF programme
dc.description.sponsorshipCIDMA strategic Project
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33864
dc.identifier.doi10.1103/PhysRevD.92.044025
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.92.044025
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24230
dc.issue.number4
dc.journal.titlePhysicall Review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFIS2011-28013
dc.relation.projectID1620
dc.relation.projectIDUID/MAT/04106/2013
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordOdd dimensions
dc.subject.keywordUniqueness
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleRadially excited rotating black holes in Einstein-Maxwell-Chern-Simons theory
dc.typejournal article
dc.volume.number92
dcterms.references[1] W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8, 245 (1968). [2] D. C. Robinson, Uniqueness of the Kerr Black Hole, Phys. Rev. Lett. 34, 905 (1975). [3] P. O. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution, J. Phys. A 15, 3173 (1982). [4] P. T. Chrusciel, J. L. Costa, and M. Heusler, Stationary black holes: Uniqueness and beyond, Living Rev. Relativity 15, 7 (2012). [5] R. C. Myers and M. J. Perry, Black holes in higher dimensional space-times, Ann. Phys. (N.Y.) 172, 304 (1986). [6] R. C. Myers, Myers-Perry black holes, arXiv:1111.1903. [7] A. N. Aliev and V. P. Frolov, Five dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio, Phys. Rev. D 69, 084022 (2004). [8] A. N. Aliev, Charged slowly rotating black holes in five dimensions, Mod. Phys. Lett. A 21, 751 (2006). [9] A. N. Aliev, Rotating black holes in higher dimensional Einstein-Maxwell gravity, Phys. Rev. D 74, 024011 (2006). [10] F. Navarro-Lérida, Perturbative charged rotating 5D Einstein-Maxwell black holes, Gen. Relativ. Gravit. 42, 2891 (2010). [11] A. N. Aliev and D. K. Ciftci, A note on rotating charged black holes in Einstein-Maxwell-Chern-Simons theory, Phys. Rev. D 79, 044004 (2009). [12] A. Sheykhi, M. Allahverdizadeh, Y. Bahrampour, and M. Rahnama, Asymptotically flat charged rotating dilaton black holes in higher dimensions, Phys. Lett. B 666, 82 (2008). [13] M. Allahverdizadeh, J. Kunz, and F. Navarro-Lérida, Extremal charged rotating black holes in odd dimensions, Phys. Rev. D 82, 024030 (2010). [14] M. Allahverdizadeh, J. Kunz, and F. Navarro-Lérida, Extremal charged rotating dilaton black holes in odd dimensions, Phys. Rev. D 82, 064034 (2010). [15] J. Kunz, F. Navarro-Lérida, and A. K. Petersen, Fivedimensional charged rotating black holes, Phys. Lett. B 614, 104 (2005). [16] J. Kunz, F. Navarro-Lérida, and J. Viebahn, Charged rotating black holes in odd dimensions, Phys. Lett. B 639, 362 (2006). [17] J. L. Blázquez-Salcedo, J. Kunz, and F. Navarro-Lérida, Angular momentum-area proportionality of extremal charged black holes in odd dimensions, Phys. Lett. B 727, 340 (2013). [18] J. L. Blázquez-Salcedo, J. Kunz, and F. Navarro-Lérida, Properties of rotating Einstein-Maxwell-Dilaton black holes in odd dimensions, Phys. Rev. D 89, 024038 (2014). [19] H. K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Relativity 16, 8 (2013). [20] J. C. Breckenridge, R. C. Myers, A.W. Peet, and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391, 93 (1997). [21] M. Cvetic, H. Lu, and C. N. Pope, Charged Kerr-de Sitter black holes in five dimensions, Phys. Lett. B 598, 273 (2004). [22] Z.W. Chong, M. Cvetic, H. Lu, and C. N. Pope, General Non-extremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity, Phys. Rev. Lett. 95, 161301 (2005). [23] J. Kunz and F. Navarro-Lérida, D ¼ 5 Einstein-Maxwell- Chern-Simons Black Holes, Phys. Rev. Lett. 96, 081101 (2006). [24] J. Kunz and F. Navarro-Lérida, Negative horizon mass for rotating black holes, Phys. Lett. B 643, 55 (2006). [25] J. L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida, and E. Radu, Sequences of Extremal Radially Excited Rotating Black Holes, Phys. Rev. Lett. 112, 011101 (2014). [26] J. P. Gauntlett, R. C. Myers, and P. K. Townsend, Black holes of D ¼ 5 supergravity, Classical Quantum Gravity 16, 1 (1999). [27] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, J. High Energy Phys. 09 (2005) 038. [28] D. Astefanesei, K. Goldstein, R. P. Jena, A. Sen, and S. P. Trivedi, Rotating attractors, J. High Energy Phys. 10 (2006) 058. [29] K. Goldstein and R. P. Jena, One entropy function to rule them all, J. High Energy Phys. 11 (2007) 049. [30] N. V. Suryanarayana and M. C. Wapler, Charges from attractors, Classical Quantum Gravity 24, 5047 (2007). [31] R. M.Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48, R3427 (1993). [32] J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31, 725 (1990). [33] M. Rogatko, First law of black rings thermodynamics in higher dimensional Chern-Simons gravity, Phys. Rev. D 75, 024008 (2007). [34] U. Ascher, J. Christiansen, and R. D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comput. 33, 659 (1979); Collocation software for boundary-value ODEs, ACM Transactions on mathematical software (TOMS) 7, 209 (1981). [35] C.-M. Chen, D. V. Gal’tsov, and D. G. Orlov, Extremal dyonic black holes in D ¼ 4 Gauss-Bonnet gravity, Phys. Rev. D 78, 104013 (2008). [36] J. Kunz and Y. Brihaye, New sphalerons in the Weinberg-Salam theory, Phys. Lett. B 216, 353 (1989). [37] M. S. Volkov and D. V. Galtsov, Black holes in Einstein Yang-Mills theory, Yad. Fiz. 51, 1171 (1990) [Sov. J. Nucl. Phys. 51, 747 (1990)]. [38] B. Kleihaus, J. Kunz, and F. Navarro-Lérida, Stationary black holes with static and counter rotating horizons, Phys. Rev. D 69, 081501 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublication2a6d99a8-5cf7-4359-b1e1-b96adfb2fb3f
relation.isAuthorOfPublication48bd59fc-6ed5-48f0-a1f9-031606622729
relation.isAuthorOfPublication.latestForDiscovery48bd59fc-6ed5-48f0-a1f9-031606622729

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NavarroLéridaF 02 libre.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format

Collections