Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electrically charged finite energy solutions of an SO(5) and an SU(3) Higgs-Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions

dc.contributor.authorNavarro Lerida, Francisco
dc.contributor.authorTchrakian, D. H.
dc.date.accessioned2023-06-18T06:46:34Z
dc.date.available2023-06-18T06:46:34Z
dc.date.issued2015-05-30
dc.description© 2015 World scientific publ co pte LTD We thank Eugen Radu for fruitful discussions and suggestions on this paper. D. H. Tchrakian thanks Hermann Nicolai for his hospitality at the Albert Einstein Institute, Golm (Max Planck Institut, Potsdam) where parts of this work were carried out. F. Navarro-Lerida acknowledges financial support of the Spanish Education and Science Ministry under Project No. FIS2011-28013 (MINECO).
dc.description.abstractWe study spherically symmetric finite energy solutions of two Higgs-Chern-Simons-Yang-Mills-Higgs (HCS-YMH) models in 3 + 1 dimensions, one with gauge group SO(5) and the other with SU(3). The Chern-Simons (CS) densities are defined in terms of both the Yang-Mills (YM) and Higgs fields and the choice of the two gauge groups is made so that they do not vanish. The solutions of the SO(5) model carry only electric charge and zero magnetic charge, while the solutions of the SU(3) model are dyons carrying both electric and magnetic charges like the Julia-Zee (JZ) dyon. Unlike the latter, however, the electric charge in both models receives an important contribution from the CS dynamics. We pay special attention to the relation between the energies and charges of these solutions. In contrast with the electrically charged JZ dyon of the Yang-Mills-Higgs (YMH) system, whose mass is larger than that of the electrically neutral (magnetic monopole) solutions, the masses of the electrically charged solutions of our HCS-YMH models can be smaller than their electrically neutral counterparts in some parts of the parameter space. To establish this is the main task of this work, which is performed by constructing the HCS-YMH solutions numerically. In the case of the SU(3) HCS-YMH, we have considered the question of angular momentum and it turns out that it vanishes.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Education and Science Ministry (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33005
dc.identifier.doi10.1142/S0217751X15500797
dc.identifier.issn0217-751X
dc.identifier.officialurlhttp://dx.doi.org/10.1142/S0217751X15500797
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.relatedurlhttp://arxiv.org/abs/1412.4654
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24138
dc.issue.number15
dc.journal.titleInternational journal of modern physics A
dc.language.isoeng
dc.publisherWorld scientific publ co pte LTD
dc.relation.projectIDFIS2011-28013
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordMagnetic monopoles
dc.subject.keywordCP conservation
dc.subject.keywordGauge-theories
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleElectrically charged finite energy solutions of an SO(5) and an SU(3) Higgs-Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions
dc.typejournal article
dc.volume.number30
dcterms.references[1] F. Navarro-Lérida, E. Radu, and D. H. Tchrakian, Int. J. Mod. Phys. A 29 (2014) 1450149 [arXiv:1311.3950 [hep-th]]. [2] D. H. Tchrakian, J. Phys. A 44 (2011) 343001 [arXiv:1009.3790 [hep-th]]. [3] E. Radu and T. Tchrakian, arXiv:1101.5068 [hep-th]. [4] see for example, R. Jackiw, “Chern-Simons terms and cocycles in physics and mathematics”, in E.S. Fradkin Festschrift, Adam Hilger, Bristol (1985). [5] S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett. 48 (1982) 975. [6] S. K. Paul and A. Khare, Phys. Lett. B 174 (1986) 420 [Erratum-ibid. 177B (1986) 453]. [7] J. Hong, Y. Kim and P. Y. Pac, Phys. Rev. Lett. 64 (1990) 2230. [8] R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. 64 (1990) 2234. [9] B. Julia and A. Zee, Phys. Rev. D 11 (1975) 2227. [10] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16 (1977) 1791. [11] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38 (1977) 1440. [12] U. Ascher, J. Christiansen, R. D. Russell, Mathematics of Computation 33 (1979) 659; ACM Transactions 7 (1981) 209. [13] E. Corrigan, D. I. Olive, D. B. Fairlie and J. Nuyts, Nucl. Phys. B 106 (1976) 475. [14] A. Sinha, Phys. Rev. D 14 (1976) 2016. [15] E. J. Weinberg, “Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics”, Cambridge Monographs on Mathematical Physics, Cambridge (2012). [16] F. Navarro-Lérida, E. Radu and D. H. Tchrakian, Phys. Rev. D 90 (2014) 064023. [17] T. H. R. Skyrme, Nucl. Phys. 31 (1962) 556.
dspace.entity.typePublication
relation.isAuthorOfPublication48bd59fc-6ed5-48f0-a1f9-031606622729
relation.isAuthorOfPublication.latestForDiscovery48bd59fc-6ed5-48f0-a1f9-031606622729

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NavarroLéridaF 01 preprint.pdf
Size:
365.83 KB
Format:
Adobe Portable Document Format

Collections