Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

What the infrared behavior of QCD vertex functions in Landau gauge can tell us about confinement

dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorAlkofer, R.
dc.contributor.authorFischer, C. S.
dc.contributor.authorSchwenzer, K.
dc.date.accessioned2023-06-20T10:37:14Z
dc.date.available2023-06-20T10:37:14Z
dc.date.issued2007-10
dc.description© World Scientific Publishing Company R. Alkofer Alkofer thanks the organizers of X Hadron Physics 2007 for inviting him to give a seminar at this extraordinarily interesting workshop. This work has been supported in part by the DFG under contract AL 279/5-1 and by the FWF under contract M979-N16. Hadron Physics Workshop (10. 2007. Florianopolis, Brasil)
dc.description.abstractThe infrared behavior of Landau gauge QCD vertex functions is investigated employing a skeleton expansion of the Dyson Schwinger and Renormalization Group equations. Results for the ghost-gluon, three-gluon, four-gluon and quark-gluon vertex functions are presented. Positivity violation of the gluon propagator, and thus gluon confinement, is demonstrated. Results of the Dyson-Schwinger equations for a finite volume are compared to corresponding lattice data. It is analytically demonstrated that a linear rising potential between heavy quarks can be generated by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that generates these singularities necessarily entails the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken, either explicitly or dynamically.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDFG
dc.description.sponsorshipFWF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23026
dc.identifier.doi10.1142/S0218301307008367
dc.identifier.issn0218-3013
dc.identifier.officialurlhttp://dx.doi.org/10.1142/S0218301307008367
dc.identifier.relatedurlhttp://arxiv.org/abs/0707.1286
dc.identifier.relatedurlhttp://www.worldscientific.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50796
dc.issue.number9
dc.journal.titleInternational Journal of Modern Physics E
dc.language.isoeng
dc.page.final2732
dc.page.initial2720
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.projectIDAL 279/5-1
dc.relation.projectIDM979-N16.
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordDyson-Schwinger Equations
dc.subject.keywordYang-Mills Theory
dc.subject.keywordRenormalization
dc.subject.keywordPropagators
dc.subject.keywordPhysics
dc.subject.keywordGluon
dc.subject.keywordField
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleWhat the infrared behavior of QCD vertex functions in Landau gauge can tell us about confinement
dc.typejournal article
dc.volume.number16
dcterms.references1. R. Alkofer and J. Greensite, J. Phys. G 34 (2007) S3 [arXiv:hep-ph/0610365]. 2. S. Mandelstam, Phys. Rept. 23 (1976) 245. 3. A. Di Giacomo, B. Lucini, L. Montesi and G. Pa_uti, Phys. Rev. D 61 (2000) 034503 [arXiv:hep lat/9906024]; Phys. Rev. D 61 (2000) 034504 [arXiv:hep-lat/9906025]. 4. J. Greensite, Prog. Part. Nucl. Phys. 51 (2003) 1 [arXiv:hep-lat/0301023]. 5. V. Gribov, Nucl. Phys. B 139 (1978) 1. 6. D. Zwanziger, Nucl. Phys. B 518 (1998) 237; Phys. Rev. Lett. 90 (2003) 102001 [arXiv: hep th/0209105]. 7. R. Alkofer and L. von Smekal, Phys. Rept. 353 (2001) 281 [arXiv:hep-ph/0007355]. 8. C. S. Fischer, J. Phys. G: Nucl. Part. Phys. 32 (2006) R253 [arXiv:hep-ph/0605173]. 9. A. C. Aguilar and A. A. Natale, JHEP 0408 (2004) 057 [arXiv:hep-ph/0408254]. 10. J. M. Maldacena, Phys. Rev. Lett. 80 (1998) 4859 [arXiv:hep-th/9803002]. 11. R. Alkofer, Brazilian J. Phys. 37 (2007) 144 [arXiv:hep ph/0611090]. 12. J. C. Taylor, Nucl. Phys. B 33 (1971) 436. 13. C. Lerche and L. von Smekal, Phys. Rev. D 65 (2002) 125006 [arXiv:hep-ph/0202194]. 14. A. Cucchieri, T. Mendes, and A. Mihara, JHEP 12 (2004) 012 [arXiv:hep- lat/0408034]. 15. W. Schleifenbaum et al., Phys. Rev. D 72 (2005) 014017 [arXiv:hep-ph/0411052]. 16. P. Watson and R. Alkofer, Phys. Rev. Lett. 86 (2001) 5239 [arXiv:hep-ph/0102332]. 17. L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. Lett. 79 (1997) 3591 [arXiv:hep-ph/9705242]; L. von Smekal, A. Hauck and R. Alkofer, Annals Phys. 267, 1 (1998) 2732 R. Alkofer et al. [arXiv:hep ph/9707327]; A. Hauck, L. von Smekal and R. Alkofer, Comput. Phys. Commun. 112 (1998) 166 arXiv:hep-ph/9804376]. 18. R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, Phys. Lett. B 611 (2005) 279 [arXiv:hep- h/0412330]; R. Alkofer et al., arXiv:nucl-th/0601032. 19. M. Huber, R. Alkofer, C. S. Fischer and K. Schwenzer, arXiv:0705.3809. 20. C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 75 (2007) 025012 [arXiv:hep-th/0609009]. 21. C. S. Fischer and R. Alkofer, Phys. Lett. B 536 (2002) 177 [arXiv:hep-ph/0202202]; C. S. Fischer, R. Alkofer and H. Reinhardt, Phys. Rev. D 65 2002 094008 [arXiv:hep ph/0202195]; R. Alkofer, C. S. Fischer and L. von Smekal, Acta Phys. Slov. 52 (2002) 191 [arXiv:hep-ph/0205125]. 22. R. Alkofer et al., Phys. Rev. D 70 (2004) 014014 [arXiv:hep-ph/0309077]; Nucl. Phys. Proc. Suppl. 141 (2005) 122. 23. P. O. Bowman et al., arXiv:hep-lat/0703022. 24. L. von Smekal and R. Alkofer, arXiv:hep-ph/0009219. 25. C. S. Fischer and R. Alkofer, Phys. Rev. D 67 (2003) 094020 [arXiv:hep-ph/0301094]. 26. A. Maas, J. Wambach and R. Alkofer, Eur. Phys. J. C 42 (2005) 93 [arXiv:hep-ph/0504019]; A. Maas et al., Eur. Phys. J. C 37 (2004) 335 [arXiv:hep-ph/0408074]; 27. A. Cucchieri, T. Mendes and A. R. Taurines, Phys. Rev. D 67 (2003) 091502. [arXiv:hep-lat/0302022]. 28. A. Cucchieri, A. Maas and T. Mendes, Phys. Rev. D 75 (2007) 076003 [arXiv:hep-lat/0702022]. 29. A. D. Linde, Phys. Lett. B 96 (1980) 289. 30. D. Zwanziger, arXiv:hep-ph/0610021. 31. P. Arnold, these proceedings. 32. A. Maas, A. Cucchieri and T. Mendes, Braz. J. Phys. 37N1B (2007) 219 [arXiv:hep-lat/0610006]. 33. A. Maas, arXiv:0704.0722 [hep-lat]. 34. C. S. Fischer, B. Gruter and R. Alkofer, Annals Phys. 321 (2006) 1918 [arXiv:hep-ph/0506053]. 35. C. S. Fischer, A. Maas, J. M. Pawlowski and L. von Smekal, Annals Phys. (2007), in print [arXiv:hep ph/0701050]. 36. A. Sternbeck et al., PoS LAT2006 (2006) 076 [arXiv:hep lat/0610053]; A. Sternbeck, PhD thesis [arXiv:hep lat/0609016]. 37. C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477 [arXiv:hep-ph/9403224]. 38. R. Alkofer, C. S. Fischer and F. J. Llanes Estrada, arXiv:hep-ph/0607293
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ34.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ34preprint.pdf
Size:
818.51 KB
Format:
Adobe Portable Document Format

Collections