Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Topological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations

dc.contributor.authorRodríguez Sebastián, Enrique
dc.contributor.authorQuintanilla, Juan Pablo
dc.contributor.authorSánchez-Aguilera López, Alberto
dc.contributor.authorEsparza, Julio
dc.contributor.authorCid, Elena
dc.contributor.authorMenéndez de la Prida, Liset
dc.date.accessioned2024-12-02T08:40:29Z
dc.date.available2024-12-02T08:40:29Z
dc.date.issued2023-11-09
dc.description.abstractThe reactivation of experience-based neural activity patterns in the hippocampus is crucial for learning and memory. These reactivation patterns and their associated sharp-wave ripples (SWRs) are highly variable. However, this variability is missed by commonly used spectral methods. Here, we use topological and dimensionality reduction techniques to analyze the waveform of ripples recorded at the pyramidal layer of CA1. We show that SWR waveforms distribute along a continuum in a low-dimensional space, which conveys information about the underlying layer-specific synaptic inputs. A decoder trained in this space successfully links individual ripples with their expected sinks and sources, demonstrating how physiological mechanisms shape SWR variability. Furthermore, we found that SWR waveforms segregated differently during wakefulness and sleep before and after a series of cognitive tasks, with striking effects of novelty and learning. Our results thus highlight how the topological analysis of ripple waveforms enables a deeper physiological understanding of SWRs.
dc.description.departmentDepto. de Fisiología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipFundación La Caixa
dc.description.sponsorshipMinisterio de Ciencia (España)
dc.description.statuspub
dc.identifier.citationSebastian, E.R., Quintanilla, J.P., Sánchez-Aguilera, A. et al. Topological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations. Nat Neurosci 26, 2171–2181 (2023). https://doi.org/10.1038/s41593-023-01471-9
dc.identifier.doi10.1038/s41593-023-01471-9
dc.identifier.essn1546-1726
dc.identifier.issn1097-6256
dc.identifier.officialurlhttps://doi.org/10.1038/s41593-023-01471-9
dc.identifier.pmid37946048
dc.identifier.relatedurlhttps://www.nature.com/articles/s41593-023-01471-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/111262
dc.issue.number12
dc.journal.titleNature Neuroscience
dc.language.isoeng
dc.page.final2181
dc.page.initial2171
dc.publisherNature
dc.relation.projectIDLCF/PR/HR21/52410030
dc.relation.projectIDPID2021-124829NB-I00
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu612.8
dc.subject.keywordHippocampus
dc.subject.keywordNeural circuits
dc.subject.keywordNeurophysiology
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco2490.01 Neurofisiología
dc.titleTopological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number26
dspace.entity.typePublication
relation.isAuthorOfPublication2b182307-e6a0-4e8c-a9a9-d901688134fb
relation.isAuthorOfPublication.latestForDiscovery2b182307-e6a0-4e8c-a9a9-d901688134fb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Topological analysis.pdf
Size:
7.16 MB
Format:
Adobe Portable Document Format

Collections