Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automorphism groups of hyperelliptic Riemann surfaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

1987

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Mathematics, Tokyo Institute of Technology
Citations
Google Scholar

Citation

Bujalance García, E. & Etayo Gordejuela, J. J. «Automorphism groups of hyperelliptic Riemann surfaces». Kodai Mathematical Journal, vol. 10, n.o 2, enero de 1987. DOI.org (Crossref), https://doi.org/10.2996/kmj/1138037412.

Abstract

If G is a group of automorphisms of a hyperelliptic Riemann surface of genus g represented as D/$\Gamma$ where D is the hyperbolic plane and $\Gamma$ a Fuchsian group, then $G\cong \Gamma '/\Gamma$ where $\Gamma$ ' is also a Fuchsian group. Furthermore G contains a central subgroup $G\sb 1$ of order 2 and if $\Gamma\sb 1$ is the corresponding subgroup of $\Gamma$ ', then $G/G\sb 1$ is a group of automorphisms of the sphere $D/\Gamma\sb 1$. Using this and structure theorem for Fuchsian groups the authors determine all surfaces of genus $g>3$ admitting groups G with $o(G)>8(g-1)$. There are two infinite families both corresponding to $\Gamma$ ' being the triangle group (2,4,m) and six other groups.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections