Pointwise Lipschitz functions on metric spaces

dc.contributor.authorDurand-Cartagena, Estibalitz
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T00:15:38Z
dc.date.available2023-06-20T00:15:38Z
dc.date.issued2010
dc.description.abstractFor a metric space X, we study the space D(infinity)(X) of bounded functions on X whose pointwise Lipschitz constant is uniformly bounded. D(infinity)(X) is compared with the space LIP(infinity)(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D(infinity)(X) with the Newtonian-Sobolev space N(1,infinity)(X). In particular, if X Supports a doubling measure and satisfies a local Poincare inequality, we obtain that D(infinity)(X) = N(1,infinity)(X).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16235
dc.identifier.doi10.1016/j.jmaa.2009.09.039
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X0900780X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42288
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final548
dc.page.initial525
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectIDMTM2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordLipschitz functions
dc.subject.keywordBanach–Stone theorem
dc.subject.keywordMetric measure spaces
dc.subject.keywordNewtonian–Sobolev spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titlePointwise Lipschitz functions on metric spaces
dc.typejournal article
dc.volume.number363
dcterms.referencesL. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25, Oxford University Press, 2004. Z.M. Balogh, K. Rogovin, T. Zurcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (3) (2004) 405–422. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428–517. ] G.B. Folland, Real Analysis, Modern Techniques and Their Applications, John Wiley & Sons, 1999. B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171–219. M.I. Garrido, J.A. Jaramillo, A Banach–Stone theorem for uniformly continuous functions, Monatsh. Math. 131 (2000) 189–192. M.I. Garrido, J.A. Jaramillo, Homomorphism on function lattices, Monatsh. Math. 141 (2004) 127–146. M.I. Garrido, J.A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. Appl. 340 (2008) 282–290. P. Hajłasz, Sobolev spaces on metric-measure spaces, Contemp. Math. 338 (2003) 173–218. P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996) 403–415. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, 2001. J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. 44 (2007) 163–232. J. Heinonen, P. Koskela, Quasiconformal maps on metric spaces with controlled geometry, Acta Math. 181 (1998) 1–61. J.R. Isbell, Algebras of uniformly continuous functions, Ann. Math. 68 (1958) 96–125. E. Jarvenpaa, M. Jarvenpaa, K. Rogovin, S. Rogovin, N. Shanmugalingam, Measurability of equivalence classes and MECp -property in metric spaces, Rev. Mat. Iberoamericana 23 (2007) 811–830. S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271–315. V. Magnani, Elements of geometric measure theory on sub-Riemannian groups, PhD theses series of Scuola Normale Superiore di Pisa, 2002. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Stud. Adv. Math., vol. 44, Cambridge University Press, 1995. S. Semmes, Some Novel Types of Fractal Geometry, Oxford University Press, 2001. N. Shanmugalingam, Newtonian spaces, An extension of Sobolev spaces to metric measure spaces, PhD thesis, University of Michigan, 1999, http://math.uc.edu/~nages/papers.html. N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000) 243–279. N. Weaver, Lipschitz Algebras, World Scientific, Singapore, 1999.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo07.pdf
Size:
395.19 KB
Format:
Adobe Portable Document Format

Collections