Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Towards a Landau-Ginzburg-type theory for granular fluids

dc.contributor.authorWakou, J.
dc.contributor.authorBrito, Ricardo
dc.contributor.authorErnst, M. H.
dc.date.accessioned2023-06-20T18:44:30Z
dc.date.available2023-06-20T18:44:30Z
dc.date.issued2002-04
dc.description© 2002 Plenum Publishing Corporation. Annual International Conference on Discrete Simulation of Fluid Dynamics (9. 2000. Santa Fe, New Mexico). M.E. acknowledges stimulating discussion with E. Ben-Naim, R. Desai and R. Kapral. J.W. and R.B. acknowledge support of the foundation "Fundamenteel Onderzoek der Materie (FOM)", which is financially supported by the Dutch National Science Foundation (NWO). J.W. also acknowledges support of a Huygens scholarship. R.B. wants to thank the Institute for Theoretical Physics of Universiteit Utrecht for its hospitality. R.B. is supported by Grant DGES-PB97-0076 (Spain)
dc.description.abstractIn this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids. The granular fluid, which is usually modeled as a fluid of inelastic hard spheres (IHS), exhibits two instabilities: the spontaneous formation of vortices and of high density clusters. We suppress the clustering instability by imposing constraints on the system sizes, in order to illustrate how LG-equations can be derived for the order parameter, being the rate of deformation or shear rate tensor, which controls the formation of vortex patterns. From the shape of the energy functional we obtain the stationary patterns in the flow field. Quantitative predictions of this theory for the stationary states agree well with molecular dynamics simulations of a fluid of inelastic hard disks.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundamenteel Onderzoek der Materie (FOM)
dc.description.sponsorshipDutch National Science Foundation (NWO)
dc.description.sponsorshipHuygens scholarship
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21411
dc.identifier.doi10.1023/A:1014590000158
dc.identifier.issn0022-4715
dc.identifier.officialurlhttp://dx.doi.org/10.1023/A:1014590000158
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://arxiv.org/pdf/cond-mat/0103086v1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58487
dc.issue.number01-Feb
dc.journal.titleJournal of Statistical Physics
dc.language.isospa
dc.page.final22
dc.page.initial3
dc.publisherSpringer
dc.relation.projectIDPB97-0076
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordFlows
dc.subject.keywordDynamics
dc.subject.keywordGases
dc.subject.keywordMedia
dc.subject.keywordInstability
dc.subject.keywordEquation
dc.subject.keywordMatter
dc.subject.keywordState
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleTowards a Landau-Ginzburg-type theory for granular fluids
dc.typejournal article
dc.volume.number107
dcterms.references1. S. R. Nagel, Rev. Mod. Phys. 64:321 (1992). 2. C. S. Campbell, Annu. Rev. Fluid Mech. 22:57 (1990). 3. W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub, Phys. Rev. Lett. 85:1428 (2000). L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, and J. P. Gollub, Phys. Rev. E 65:U11307 (2001). 4. P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature 382:793 (1996). 5. G. P. Collins, Sci. Am. 284 (1):17 (2001). 6. E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57:1971 (1998). J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 81:4369 (1998). 7. D. R. Williams and F. C. MacKintosh, Phys. Rev. E 54:R9 (1996). G. Peng and T. Ohta, Phys. Rev. E 58:4737 (1998). C. Bizon, M. D. Shattuck, J. B. Swift, and H. L. Swinney, Phys. Rev. E 60:4340 (1999). A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, and A. Vulpiani, Phys. Rev. Lett. 81:3848 (1998). A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, and A. Vulpiani, Phys. Rev. E 59:5582 (1999). T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59:4326 (1999). 8. J. T. Jenkins and M. W. Richman, Phys. Fluids 28:3485 (1985). J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130:187 (1983). 9. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70:1619 (1993). I. Goldhirsch, M-L. Tan, and G. Zanetti, J. Scient. Comp. 8:1 (1993). 10. R. Soto, M. Mareschal, and M. Malek Mansour, Phys. Rev. E 62:3836 (2000). 11. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977). 12. L. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959). 13. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997). 14. J. A. G. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, Int. J. Mod. Phys. C 8:953 (1997). 15. T. P. C. van Noije, M. H. Ernst, R. Brito, and J. A. G. Orza, Phys. Rev. Lett. 79:411 (1997). 16. T. P. C. van Noije, M. H. Ernst, and R. Brito, Phys. Rev. E 57:R4891 (1998). 17. P. K. Haff, J. Fluid Mech. 134:401 (1983). 18. S. McNamara, Phys. Fluids A 5:3056 (1993). 19. P. Deltour and J.-L. Barrat, J. Phys. I France 7:137 (1997). 20. J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54:445 (1996) 21. S. E. Esipov and T. Pöschel, J. Stat. Phys. 86:1385 (1997). 22. T. P. C. van Noije and M. H. Ernst, Phys. Rev. E 61:1765 (2000). 23. R. Brito and M. H. Ernst, Europhys. Lett. 43:497 (1998). R. Brito and M. H. Ernst, Int. J. Mod. Phys. C 9:1339 (1998). 24. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 60:3150 (1999). 25. E. Ben-Naim, S. Y. Chen, G. D. Doolen, and S. Redner, Phys. Rev. Lett. 83:4069 (1999). 26. J. Wakou, to be published. 27. G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, 1970). 28. U. Frisch, Turbulence: The legacy of A. N. Kolmogorov (Cambridge University Press, 1996). 29. E. Trizac and A. Barrat, Eur. Phys. J. E. 3:291 (2000). 30. S. Chen, Y. Deng, X. Nie, and Y. Tu, Phys. Lett. A 269:218 (2000)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito13preprint.pdf
Size:
380.54 KB
Format:
Adobe Portable Document Format

Collections