Another Note on Paraconsistent Neutrosophic Sets

dc.contributor.authorGallego Lupiáñez, Francisco
dc.date.accessioned2023-06-17T23:59:25Z
dc.date.available2023-06-17T23:59:25Z
dc.date.issued2017-08-02
dc.description.abstractIn an earlier paper, we proved that Smarandache’s definition of neutrosophic paraconsistent topology is neither a generalization of Çoker’s intuitionistic fuzzy topology nor a generalization of Smarandache’s neutrosophic topology. Recently, Salama and Alblowi proposed a new definition of neutrosophic topology, that generalizes Çoker’s intuitionistic fuzzy topology. Here, we study this new definition and its relation to Smarandache’s paraconsistent neutrosophic sets.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63200
dc.identifier.doi10.3390/sym9080140
dc.identifier.issn2073-8994
dc.identifier.officialurlhttps://doi.org/10.3390/sym9080140
dc.identifier.relatedurlhttps://www.mdpi.com/2073-8994/9/8/140
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19120
dc.issue.number8
dc.journal.titleSymmetry
dc.language.isoeng
dc.page.initial140
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu510.6
dc.subject.cdu510.3
dc.subject.cdu515.1
dc.subject.keywordLogic
dc.subject.keywordSet-theory
dc.subject.keywordTopology
dc.subject.keywordAtanassov’s intuitionistic fuzzy sets
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.ucmTeoría de conjuntos
dc.subject.ucmTopología
dc.subject.unesco1102.14 Lógica Simbólica
dc.subject.unesco1201.02 Teoría Axiomática de Conjuntos
dc.subject.unesco1210 Topología
dc.titleAnother Note on Paraconsistent Neutrosophic Sets
dc.typejournal article
dc.volume.number9
dcterms.references1. Smarandache, F. A unifying field in Logics: Neutrosophic Logic. Mult.-Valued Log. 2002, 8, 385–438. 2. Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy set. Intern. J. Pure Appl. Math. 2005, 24, 287–297. 3. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef] 4. Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89. [CrossRef] 5. Priest, G.; Routley, R.; Norman, J. (Eds.) Paraconsistent Logic: Essays on the Inconsistent; Philosophia Verlag: Munich, Germany, 1989. 6. Beziau, I.Y.; Chakraborty, M.; Dutta, D. New directions in paraconsistent logic. In Proceedings of the 5th World Congress on Paraconsistency (WCP), Kolkata, India, 13–17 February 2014; Springer: Kolkata, 2014. 7. Da Costa, N.C.A. Nota sobre o conceito de contradição. Anuário Soc. Paranense Mat. 1958, 1, 6–8. 8. Peña, L. Dialectical arguments, matters of degree, and paraconsistent Logic. In Argumentation: Perspectives and Approaches; van Eemeren, F.H., Grootendorst, R., Blair, J.A., Willard, C.A., Eds.; Foris Publication: Dordrecht, The Netherlands, 1987; pp. 426–433. 9. Avron, A. Paraconsistent fuzzy logic preserving non-falsity. Fuzzy Sets Syst. 2016, 292, 75–84. [CrossRef] 10. Lupiáñez, F.G. On Neutrosophic Paraconsistent Topology. Kybernetes 2010, 39, 598–601. [CrossRef] 11. Salama, A.A.; Alblowi, S.A. Neutrosophic set and neutrosophic topological spaces. IOSR J. Math. 2012, 3, 31–35. [CrossRef] 12. Lupiáñez, F.G. On neutrosophic sets and topology. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; pp. 305–313. 13. Robinson, A. Non-Standard Analysis; North Holland: Amsterdam, The Netherlands, 1966. 14. Hrbacek, K. Nonstandard Set Theory. Am. Math. Mon. 1979, 86, 659–677. [CrossRef]
dspace.entity.typePublication
relation.isAuthorOfPublicationd690c2bd-762b-4bd2-a8ba-11c504ad15d5
relation.isAuthorOfPublication.latestForDiscoveryd690c2bd-762b-4bd2-a8ba-11c504ad15d5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry-09-00140.pdf
Size:
214.08 KB
Format:
Adobe Portable Document Format

Collections