Another Note on Paraconsistent Neutrosophic Sets
| dc.contributor.author | Gallego Lupiáñez, Francisco | |
| dc.date.accessioned | 2023-06-17T23:59:25Z | |
| dc.date.available | 2023-06-17T23:59:25Z | |
| dc.date.issued | 2017-08-02 | |
| dc.description.abstract | In an earlier paper, we proved that Smarandache’s definition of neutrosophic paraconsistent topology is neither a generalization of Çoker’s intuitionistic fuzzy topology nor a generalization of Smarandache’s neutrosophic topology. Recently, Salama and Alblowi proposed a new definition of neutrosophic topology, that generalizes Çoker’s intuitionistic fuzzy topology. Here, we study this new definition and its relation to Smarandache’s paraconsistent neutrosophic sets. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/63200 | |
| dc.identifier.doi | 10.3390/sym9080140 | |
| dc.identifier.issn | 2073-8994 | |
| dc.identifier.officialurl | https://doi.org/10.3390/sym9080140 | |
| dc.identifier.relatedurl | https://www.mdpi.com/2073-8994/9/8/140 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/19120 | |
| dc.issue.number | 8 | |
| dc.journal.title | Symmetry | |
| dc.language.iso | eng | |
| dc.page.initial | 140 | |
| dc.publisher | MDPI | |
| dc.rights | Atribución 3.0 España | |
| dc.rights.accessRights | open access | |
| dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
| dc.subject.cdu | 510.6 | |
| dc.subject.cdu | 510.3 | |
| dc.subject.cdu | 515.1 | |
| dc.subject.keyword | Logic | |
| dc.subject.keyword | Set-theory | |
| dc.subject.keyword | Topology | |
| dc.subject.keyword | Atanassov’s intuitionistic fuzzy sets | |
| dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
| dc.subject.ucm | Teoría de conjuntos | |
| dc.subject.ucm | Topología | |
| dc.subject.unesco | 1102.14 Lógica Simbólica | |
| dc.subject.unesco | 1201.02 Teoría Axiomática de Conjuntos | |
| dc.subject.unesco | 1210 Topología | |
| dc.title | Another Note on Paraconsistent Neutrosophic Sets | |
| dc.type | journal article | |
| dc.volume.number | 9 | |
| dcterms.references | 1. Smarandache, F. A unifying field in Logics: Neutrosophic Logic. Mult.-Valued Log. 2002, 8, 385–438. 2. Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy set. Intern. J. Pure Appl. Math. 2005, 24, 287–297. 3. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef] 4. Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89. [CrossRef] 5. Priest, G.; Routley, R.; Norman, J. (Eds.) Paraconsistent Logic: Essays on the Inconsistent; Philosophia Verlag: Munich, Germany, 1989. 6. Beziau, I.Y.; Chakraborty, M.; Dutta, D. New directions in paraconsistent logic. In Proceedings of the 5th World Congress on Paraconsistency (WCP), Kolkata, India, 13–17 February 2014; Springer: Kolkata, 2014. 7. Da Costa, N.C.A. Nota sobre o conceito de contradição. Anuário Soc. Paranense Mat. 1958, 1, 6–8. 8. Peña, L. Dialectical arguments, matters of degree, and paraconsistent Logic. In Argumentation: Perspectives and Approaches; van Eemeren, F.H., Grootendorst, R., Blair, J.A., Willard, C.A., Eds.; Foris Publication: Dordrecht, The Netherlands, 1987; pp. 426–433. 9. Avron, A. Paraconsistent fuzzy logic preserving non-falsity. Fuzzy Sets Syst. 2016, 292, 75–84. [CrossRef] 10. Lupiáñez, F.G. On Neutrosophic Paraconsistent Topology. Kybernetes 2010, 39, 598–601. [CrossRef] 11. Salama, A.A.; Alblowi, S.A. Neutrosophic set and neutrosophic topological spaces. IOSR J. Math. 2012, 3, 31–35. [CrossRef] 12. Lupiáñez, F.G. On neutrosophic sets and topology. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; pp. 305–313. 13. Robinson, A. Non-Standard Analysis; North Holland: Amsterdam, The Netherlands, 1966. 14. Hrbacek, K. Nonstandard Set Theory. Am. Math. Mon. 1979, 86, 659–677. [CrossRef] | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 | |
| relation.isAuthorOfPublication.latestForDiscovery | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 |
Download
Original bundle
1 - 1 of 1


