Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial regression analysis of NO_(x) and O_(3) concentrations in Madrid urban area using Radial Basis Function networks

dc.contributor.authorSalcedo Sanz, S.
dc.contributor.authorPortilla Figueras, J.A.
dc.contributor.authorOrtiz Garcíaq, E.G.
dc.contributor.authorPérez Bellido, A.M.
dc.contributor.authorGarcía Herrera, Ricardo Francisco
dc.contributor.authorElorrieta, J.I.
dc.date.accessioned2023-06-20T00:49:56Z
dc.date.available2023-06-20T00:49:56Z
dc.date.issued2009-11-15
dc.description© 2009 Elsevier B.V. All rights reserved. The authors would like to thank the Air Quality Area of Madrid City Council for their support in this investigation. This work has been partially supported by Comunidad de Madrid, Universidad de Alcalá, through Project CCG07-UAH/AMB-3993. E. G. Ortiz-García is supported by Universidad de Alcalá through a FPI grant. Á. M. PérezBellido is supported by a doctoral fellowship by the European Social Fund and Junta de Comunidades de Castilla la Mancha, in the frame of the Operating Programme ESF 2007–2013.
dc.description.abstractThis paper discusses the performance of Radial Basis Function networks (RBF) in a problem of spatial regression of pollutants in Madrid. Specifically, the spatial regression of NO_(x) and O_(3) is considered, in such a way that, starting from a set of measuring points provided by the air quality monitoring network of Madrid, the complete surface of the pollutants in the city is obtained. This pollutant surface can be used as an initial step for modeling intra-urban pollution using land-use regression techniques for example. Also, different works has used a pollutant surface to study the patterns of pollution in different cities in the world and also to establish their air monitoring networks under mathematical criteria. The paper is focussed in analyzing the performance of RBF networks to obtain this first pollutant surface, so different RBF training algorithms are tested in this paper. Specifically, evolutionary-based RBF training algorithms are described, and compared with classical training algorithms for RBF networks with Gaussian kernels. The inclusion of meteorological variables in the RBF networks are also discussed in the paper. The experimental part of the article studies real results of the application of RBF networks to obtain a first pollutant surface of NO_(x) and O_(3), using the data of the air pollution monitoring network of Madrid and the meteorological network of the city.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid/Universidad de Alcalá
dc.description.sponsorshipJunta de Comunidades de Castilla la Mancha
dc.description.sponsorshipAir Quality Area of Madrid City Council
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/61761
dc.identifier.doi10.1016/j.chemolab.2009.07.012
dc.identifier.issn0169-7439
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.chemolab.2009.07.012
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43028
dc.issue.number1
dc.journal.titleChemometrics and intelligent laboratory sistems
dc.language.isoeng
dc.page.final90
dc.page.initial79
dc.publisherElsevier Science BV
dc.relation.projectIDCCG07-UAH/AMB-3993
dc.relation.projectIDESF 2007–2013
dc.relation.projectIDFPI grant
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordLand-use regression
dc.subject.keywordPollution monitoring network
dc.subject.keywordFine particulate matter
dc.subject.keywordRBF neural-networks
dc.subject.keywordOzone concentration
dc.subject.keywordPrediction
dc.subject.keywordOptimization
dc.subject.keywordAlgorithm
dc.subject.keywordEmissions
dc.subject.keywordEpisodes
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleSpatial regression analysis of NO_(x) and O_(3) concentrations in Madrid urban area using Radial Basis Function networks
dc.typejournal article
dc.volume.number99
dspace.entity.typePublication
relation.isAuthorOfPublication194b877d-c391-483e-9b29-31a99dff0a29
relation.isAuthorOfPublication.latestForDiscovery194b877d-c391-483e-9b29-31a99dff0a29

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
garciaherrera22.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections