AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior
Loading...
Download
Official URL
Full text at PDC
Publication date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Abstract
Herein, we report the synthesis, characterization, and electrical properties of lead-free AgSnm[Bi1−xSbx]Se2+m (m = 1, 2) selenides. Powder X-ray diffraction patterns and Rietveld refinement data revealed that these selenides consisted of phases related to NaCl-type crystal structure. The microstructures and morphologies of the selenides were investigated by backscattered scanning electron microscopy, energy-dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The studied AgSnm[Bi1−xSbx]Se2+m systems exhibited typical p-type semiconductor behavior with a carrier concentration of approximately ~+1020 cm−3. The electrical conductivity of AgSnm[Bi1−xSbx]Se2+m decreased from ~3.0 to ~10−3 S·cm−1 at room temperature (RT) with an increase in m from 1 to 2, and the Seebeck coefficient increased almost linearly with increasing temperature. Furthermore, the Seebeck coefficient of AgSn[Bi1−xSbx]Se3 increased from ~+36 to +50 μV·K−1 with increasing Sb content (x) at RT, while its average value determined for AgSn2[Bi1−xSbx]Se4 was approximately ~+4.5 μV·K−1.