Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Network clustering by graph coloring: An application to astronomical images

dc.book.titleIntelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
dc.contributor.authorZarrazola Rivera, Edwin
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.contributor.authorGómez De Castro, Ana Inés
dc.date.accessioned2023-06-20T05:46:31Z
dc.date.available2023-06-20T05:46:31Z
dc.date.issued2011
dc.description.abstractIn this paper we propose an efficient and polynomial hierarchical clustering technique for unsupervised classification of items being connected by a graph. The output of this algorithm shows the cluster evolution in a divisive way, in such a way that s soon as two items are included in the same cluster they will join a common cluster until the last iteration, in which all the items belong to a singleton cluster. This output can be viewed as a fuzzy clustering in which for each alpha cut we have a standard cluster of the network. The clustering tool we present in this paper allows a hierarchical clustering of related items avoiding some unrealistic constraints that are quite often assumed in clustering problems. The proposed procedure is applied to a hierarchical segmentation problem in astronomical images.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28655
dc.identifier.doi10.1109/ISDA.2011.6121754
dc.identifier.isbn978-1-4577-1676-8
dc.identifier.officialurlhttps//doi.org/10.1109/ISDA.2011.6121754
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6121754&abstractAccess=no&userType=inst
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45541
dc.language.isoeng
dc.page.final801
dc.page.initial796
dc.page.total1402
dc.publisherIEEE
dc.relation.projectIDTIN2009-07901
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordGraph Theory
dc.subject.keywordHierarchical Clustering
dc.subject.keywordAstronomical Images.
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleNetwork clustering by graph coloring: An application to astronomical imagesen
dc.typebook part
dcterms.references[1] S. Fortunato. “Community detection in graphs”. Physics Reports 486,75–174 (2010). [2] M. Girvan and M.E.J. Newman. “Community structure in social and biological networks”. Proceedings of the National Academy of Sciences of the USA 99, 7821–7826 (2002). [3] D. Gomez and J. Montero. “Fuzzy sets in remote sensing classification”. Soft Computing 12, 243–249 (2008). [4] D. Gomez, J. Montero and G. Biging. “Improvements to remote sensing using fuzzy classification, graphs and accuracy statistics”. Pure and Applied Geophysics 165, 1555–1575 (2008). [5] D. Gomez, J. Montero and G. Biging. “Accuracy statistics for judging soft classification”. International Journal of Remote Sensing 29(3), 693–709 (2008). [6] D. G´omez, J. Montero and J. Y´anez. “A coloring algorithm for image classification”. Information Sciences 176, 3645–3657 (2006). [7] D. Gomez, J. Montero, J. Yañez and C. Poidomani. “A graph coloring algorithm approach for image segmentation”. Omega 35, 173–183 (2007). [8] W. Groissboeck, E. Lughofer and S. Thumfart. “Associating visual textures with human perceptions using genetic algorithms”. Information Sciences 180(11), 2065–2084 (2010). [9] R. Kruse. “Temporal aspects in data mining”. Proceedings of the 2010 World Congress on Computational Intelligence, Barcelona, 18–23 July (IEEE Press, 2010). [10] P. Larraˆnaga. “Probabilistic graphical models and evolutionary computation”. Proceedings of the 2010 World Congress on Computational Intelligence, Barcelona, 18–23 July (IEEE Press, 2010). [11] C. Martin, T. Barlow, W. Barnhart, L. et al. “The Galaxy Evolution Explorer”. Society of Photo-Optical Instrumentation Engineers (SPIE)Conference Series, 336–350 February 2003. [12] S. Mitra. “Hybridization with rough sets”. Proceedings of the 2010 World Congress on Computational Intelligence, Barcelona, 18–23 July (IEEE Press, 2010). [13] J. Montero, V. Lopez and D. G´omez. “The role of fuzziness in decision making”. Studies in Fuzziness and Soft Computing 215, 337–349 (2007). [14] J. Montero and L. Martınez. “Upgrading ideas about the concept of soft computing”. International Journal of Computational Intelligence Systems 3, 144–147 (2010). [15] M.E.J. Newman. “Analysis of weighted networks”. Physical Review E 70, 056131 (2004). [16] E. Ruspini. “From clusters to models and perceptions: The evolution of fuzzy clustering”. Proceedings of the 2010 World Congress on Computational Intelligence, Barcelona, 18–23 July (IEEE Press, 2010). [17] F. Tavares-Pereira, J.R. Figueira, V. Mousseau and B. Roy. “Multiple criteria districting problems – The public transportation network pricing system of the Paris region”. Annals of Operations Research 154, 69–92 (2007). [18] S. Usui. “PLATO: Platform for collaborative brain system modeling”. Proceedings of the 2010 World Congress on Computational Intelligence,Barcelona, 18–23 July (IEEE Press, 2010). [19] J.Yañez, S. Muñoz and J. Montero. “Graph coloring inconsistencies in image segmentation”. Computer Engineering and Information Sciences 1, 435–440 (2008). [20] S. Yue, J.S. Wang, T. Wu and H. Wang. “A new separation measure for improving the effectiveness of validity indices. Information Sciences 180(5), 748–764 (2010).
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication492947a5-78aa-4c19-bb69-3dd332bff97c
relation.isAuthorOfPublication.latestForDiscovery492947a5-78aa-4c19-bb69-3dd332bff97c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero110.pdf
Size:
296.33 KB
Format:
Adobe Portable Document Format