Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

EEG functional connectivity contributes to outcome prediction of postanoxic coma

dc.contributor.authorCarrasco Gómez, Martín
dc.contributor.authorKeijzer, Hanneke M.
dc.contributor.authorRuijter, Barry J.
dc.contributor.authorBruña Fernández, Ricardo
dc.contributor.authorTjepkema-Cloostermans, Marleen C.
dc.contributor.authorHofmeijer, Jeannette
dc.contributor.authorvan Putten, Michel J. A. M.
dc.date.accessioned2024-02-08T12:14:45Z
dc.date.available2024-02-08T12:14:45Z
dc.date.issued2021-06
dc.description.abstractObjective To investigate the additional value of EEG functional connectivity features, in addition to non-coupling EEG features, for outcome prediction of comatose patients after cardiac arrest. Methods Prospective, multicenter cohort study. Coherence, phase locking value, and mutual information were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine learning classification models were trained and validated with functional connectivity, EEG non-coupling features, and a combination of these. Neurological outcome was assessed at six months and categorized as “good” (Cerebral Performance Category [CPC] 1–2) or “poor” (CPC 3–5). Results We included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34–56%) at 100% specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0–54%) at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity of 73% (50–77%) at 100% specificity. Conclusion Functional connectivity measures improve EEG based prediction models for poor outcome of postanoxic coma. Significance Functional connectivity features derived from early EEG hold potential to improve outcome prediction of coma after cardiac arrest.
dc.description.departmentDepto. de Radiología, Rehabilitación y Fisioterapia
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationCarrasco-Gómez M, Keijzer HM, Ruijter BJ, Bruña R, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM. EEG functional connectivity contributes to outcome prediction of postanoxic coma. Clin Neurophysiol. 2021 Jun;132(6):1312-1320. doi: 10.1016/j.clinph.2021.02.011. Epub 2021 Mar 12. PMID: 33867260.
dc.identifier.doi10.1016/j.clinph.2021.02.011
dc.identifier.essn1872-8952
dc.identifier.issn1388-2457
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S138824572100078X
dc.identifier.pmid33867260
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/33867260/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100395
dc.issue.number6
dc.journal.titleClinical Neurophysiology
dc.language.isoeng
dc.page.final1320
dc.page.initial1312
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu612.8
dc.subject.cdu004.8
dc.subject.keywordEEG functional connectivity
dc.subject.keywordIntensive care
dc.subject.keywordMachine learning
dc.subject.keywordOutcome prediction
dc.subject.keywordPostanoxic coma
dc.subject.ucmNeurociencias (Medicina)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco2490 Neurociencias
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleEEG functional connectivity contributes to outcome prediction of postanoxic coma
dc.typejournal article
dc.type.hasVersionSMUR
dc.volume.number132
dspace.entity.typePublication
relation.isAuthorOfPublicationef335315-bb52-49b1-8703-63c7caae45f8
relation.isAuthorOfPublication.latestForDiscoveryef335315-bb52-49b1-8703-63c7caae45f8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carrasco-Gómez et al. 2021 Clin. Neurophysiol. 132.1312-20.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

Collections