Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation
dc.contributor.author | Khayet Souhaimi, Mohamed | |
dc.contributor.author | Cojocaru, C. | |
dc.contributor.author | García Payo, M. Carmen | |
dc.date.accessioned | 2023-06-20T03:42:56Z | |
dc.date.available | 2023-06-20T03:42:56Z | |
dc.date.issued | 2010-04-01 | |
dc.description | © 2010 Elsevier B.V. The authors gratefully acknowledge the financial support of the UCM-BSCH (Project GR58/08, UCM group 910336). Dr. C. Cojocaru is thankful to the University Complutense of Madrid for the grant "Estancias de Doctores y Tecnologos en la Universidad Complutense". | |
dc.description.abstract | Flat-sheet poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, membranes have been prepared using the phase inversion technique based on fractional factorial design. Combined effects of polymer and additive (polyethylene glycol, PEG) concentrations in the casting solutions, solvent evaporation time and coagulation bath temperature on the structural characteristics of the prepared membranes as well as on their direct contact membrane distillation (DCMD) performance have been investigated using statistical approach. The morphological properties of the membranes have been studied in terms of scanning electron microscopy, atomic force microscopy and void volume fraction. The factorial linear models have been developed to describe the main effects of factors on the DCMD responses namely, pure water permeation flux, permeate flux when using salt solution and salt rejection coefficient of the prepared membranes. Analysis of variance showed that all factors have significant effects on the responses. However, the coagulation bath temperature is the least influential factor, while the PVDF-HFP concentration has the greatest effects on both the permeate flux and the salt rejection coefficient. Optimization of membrane preparation conditions has been carried out using a minimum number of experiments and applying Lagrange multipliers optimization method. Under the obtained optimum conditions, 19.1 wt.% PVDF-HFP concentration, 4.99 wt.% PEG concentration, 35 degrees C coagulation bath temperature and 102 s solvent evaporation time, the prepared membrane exhibits the highest salt rejection coefficient, 99.95%, with a permeate flux of 4.41 L/h m(2). | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | UCM-BSCH | |
dc.description.sponsorship | University Complutense of Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26342 | |
dc.identifier.doi | 10.1016/j.memsci.2010.01.057 | |
dc.identifier.issn | 0376-7388 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.memsci.2010.01.057 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44305 | |
dc.issue.number | 01-feb | |
dc.journal.title | Journal of membrane science | |
dc.language.iso | eng | |
dc.page.final | 245 | |
dc.page.initial | 234 | |
dc.publisher | Elsevier B. V. | |
dc.relation.projectID | GR58/08, UCM group 910336 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Response-surface methodology | |
dc.subject.keyword | Hollow-fiber membranes | |
dc.subject.keyword | Cellulose-acetate membranes | |
dc.subject.keyword | Atomic-force microscopy | |
dc.subject.keyword | Phase-separation | |
dc.subject.keyword | Copper removal | |
dc.subject.keyword | Water | |
dc.subject.keyword | Pervaporation | |
dc.subject.keyword | Polysulfone | |
dc.subject.keyword | Morphology | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation | |
dc.type | journal article | |
dc.volume.number | 351 | |
dcterms.references | [1] C. Barth, M.C. Goncalves, A.T.N. Pires, J. Roeder, B.A. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, J. Membr. Sci. 169 (2000) 287–299. [2] J.G. Wijmans, J. Kant, M.H.V. Mulder, C.A. Smolders, Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation, Polymer 26 (1985) 1539–1545. [3] N. Vogrin, C. Stropnik, V. Musil, M. Brumen, The wet phase separation: the effect of cast solution thickness on the appearance of macrovoids in the membrane forming ternary cellulose acetate/acetone/water system, J. Membr. Sci. 207 (2002) 139–141. [4] P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, J. Membr. Sci. 117 (1996) 1–31. [5] M. Khayet, T. Matsuura, Pervaporation and vacuum membrane distillation processes: modeling and experiments, AIChE J. 50 (2004) 1697–1712. [6] M. Khayet, Membrane distillation, in: N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds.), Advanced Membrane Technology and Applications, John Wiley & Sons, New Jersey, 2008, pp. 297–370. [7] M.S. El-Bourawi, Z. Ding, R. Ma,M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (1–2) (2006) 4–29. [8] M. Khayet, T. Matsuura, J.I. Mengual, M. Qtaishat, Design of novel direct contact membrane distillation membranes, Desalination 192 (2006) 105–111. [9] M. Tomaszewska, Preparation and properties of flat-sheet membranes from polyvinylidene fluoride for membrane distillation, Desalination 104 (1996) 1–11. [10] J.M. Ortiz de Zárate, L. Peña, J.I. Mengual, Characterization of membrane distillation membranes prepared by phase inversion, Desalination 100 (1995) 139–148. [11] C. Feng, B. Shi, G. Li, Y. Wu, Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation, J. Membr. Sci. 237 (2004) 15–24; M. Qtaishat, M. Khayet, T. Matsuura, Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation, J. Membr. Sci. 341 (2009) 139–148. [12] M. Khayet, J.I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation, J. Membr. Sci. 252 (2005) 101–113. [13] B. Wu, X. Tan, W.K. Teo, K. Li, Removal of benzene/toluene from water by vacuum membrane distillation in a PVDF hollow fiber membrane module, Sep. Sci. Tech. 40 (2005) 2679–2695. [14] B. Wu, X. Tan, K. Li, W.K. Teo, Removal of 1,1,1-trichloroethane from water using a poly(vinylidene fluoride) hollow fiber membrane module: vacuum membrane distillation operation, Sep. Purif. Technol. 52 (2006) 301–309. [15] K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-skin for the fresh water production through membrane distillation, Chem. Eng. Sci. 63 (2008) 2587–2594. [16] S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes, J. Membr. Sci. 306 (2007) 134–146. [17] M.C. García Payo, M. Essalhi, M. Khayet, Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes, J. Membr. Sci. 347 (2010) 209–219. [18] E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, J. Membr. Sci. 326 (2) (2009) 627–634. [19] W.H. Chan, S.C. Tsao, Fabrication of nanofiltration membranes with tunable separation characteristics using methods of uniform design and regression analysis, Chemom. Intell. Lab. Syst. 65 (2) (2003) 241–256. [20] A.F. Ismail, P.Y. Lai, Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology, Sep. Purif. Technol. 40 (2) (2004) 191–207. [21] A. Idris, F. Kormin, M.Y. Noordin, Application of response surface methodology in describing the performance of thin film composite membrane, Sep. Purif. Technol. 49 (3) (2006) 271–280. [22] M. Khayet, M.N. Abu Seman, N. Hilal, Response surface modeling and optimization of composite nanofiltration modified membranes, J. Membr. Sci. 349 (2010) 113–122. [23] E. Barbosa-Coutinho, V.M.M. Salim, C. Piacsek Borges, Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide, Carbon 41 (9) (2003) 1707–1714. [24] C. Falamaki, J. Veysizadeh, Taguchi design of experiments approach to the manufacture of one-step alumina microfilter/membrane supports by the centrifugal casting technique, Ceram. Int. 34 (7) (2008) 1653–1659. [25] T. Mohammadi, A. Pak, Z. Nourian, M. Taherkhani, Experimental design in mullite microfilter preparation, Desalination 184 (1–3) (2005) 57–64. [26] F. Xiangli, W. Wei, Y. Chen, W. Jin, N. Xu, Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology, J. Membr. Sci. 311 (1–2) (2008) 23–33. [27] I. Xiarchos, A. Jaworska, G. Zakrzewska-Trznadel, Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration, J. Membr. Sci. 321 (2008) 222–231. [28] C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci. 298 (1–2) (2007) 56–70. [29] A. Santafé Moros, J.M. Gozálvez Zafrilla, J. Lora García, J.C. García Díaz, Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration, Desalination 185 (1–3) (2005) 289–296. [30] M. Khayet, C. Cojocaru, M.C. García Payo, Application of Response Surface Methodology and Experimental Design in Direct Contact Membrane Distillation, Ind. Eng. Chem. Res. 46 (2007) 5673–5685. [31] M. Khayet, C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization in pervaporation, J. Membr. Sci. 321 (2) (2008) 272–283. [32] M. Khayet, K.C. Khulbe, T. Matsuura, Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process, J. Membr. Sci. 238 (1–2) (2004) 199–211. [33] M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes, Chem. Eng. Sci. 58 (2003) 3091–3104. [34] M. Khayet, Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle meausurements, J. Appl. Surf. Sci. 238 (2004) 269–272 [35] M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilb. Thermodyn. 29 (2004) 249–299. [36] M.R. Pekny, J. Zartman, W.B. Krantz, A.R. Greenberg, P. Todd, Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes, J. Membr. Sci. 211 (2003) 71–90. [37] J.Y. Lai, F.C. Lin, C.C. Wang, D.M. Wang, Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes, J. Membr. Sci. 118 (1996) 49–61. [38] M. Macoveanu, G. Juncu, R. Vasiliu, Optimization of anodic oxidation of sulfuric acid solutions, Hung. J. Ind. Chem. 15 (3) (1987) 277–328 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8e32e718-0959-4e6c-9e04-891d3d43d640 | |
relation.isAuthorOfPublication | 4445a915-d69c-4da6-8878-c17f5b0b7811 | |
relation.isAuthorOfPublication.latestForDiscovery | 8e32e718-0959-4e6c-9e04-891d3d43d640 |
Download
Original bundle
1 - 1 of 1