Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets

dc.contributor.authorAcquistapace, Francesca
dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorBroglia, Fabrizio
dc.date.accessioned2023-06-20T16:49:41Z
dc.date.available2023-06-20T16:49:41Z
dc.date.issued2000
dc.description.abstractAnalytic functions strictly positive on a global semianalytic set X = {f1 0, · · · , fk 0} in Rn are characterized as functions expressible as g = a0+a1f1+· · ·+akfk for strictly positive global analytic functions a0, · · · , ak. The proof is elementary, using the fact that the analytic functions are dense in C(Rn,R) in the Whitney topology. The same proof works for Nash functions. This is an improvement of the standard analytic version of Stengle’s Positivstellensatz in two directions: The hypothesis is weaker (there is no requirement that X be compact) and the conclusion is stronger. Several applications are given including: (i) a new proof of the weak Positivstellensatz for semianalytic sets; and (ii) the solution of theK-moment problem for basic closed semianalytic
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGNSAGA
dc.description.sponsorshipCNR
dc.description.sponsorshipMURST
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14797
dc.identifier.doi10.1007/s002080050346
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/4pq0j27lr3k08e5l/fulltext.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57155
dc.issue.number4
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final616
dc.page.initial606
dc.publisherSpringer
dc.relation.projectIDHI1997-0122
dc.relation.projectIDPB95-0354
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordPositivstellensatz
dc.subject.keywordglobal semianalytic set
dc.subject.keywordK-moment problem Classification
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets
dc.typejournal article
dc.volume.number316
dcterms.references[ABR] C. Andradas, L.Br¨ocker, J.M.Ruiz. Constructible sets in real geometry. Ergeb. Math. Greuzgeb (3) 33 Berlin Springer Verlag (1996) [BCR] J. Bochnack, M.Coste, M.F.Roy. Real algebraic geometry. Ergeb. Math. Greuzgeb (3) 36 Berlin Springer Verlag (1998) [BS] E. Becker, N. Schwartz. Zum Darstellungsatz von Kadison–Dubois. Archiv der Math. Vol. 40 (1983),421–428 [BW] R. Berr, T.W¨orman. Positive polynomials and tame preorderings. Preprint (1998) [C] G. Choquet.Lectures on analysis. Vol. 1 Reading; Benjamin (1969) [J] T. Jacobi. A representation theorem for certain partially ordered commutative rings. To appear. [M] M.A. Marshall. A real holomorphy ring without the Schm¨udgen property. Canad. Math. Bull. 42(3), 354–358 (1999) [N] R. Narasimhan. Analysis on real and complex manifolds. Masson & cie, Paris; North- Holland, Amsterdam (1968) [P] M. Putinar. Positive Polynomials on Compact Semi-algebraic Sets. Indiana Univ. math. Journ. Vol. 42 No. 3 969–984 (1993) [S] K. Schm¨udgen. The K–moment problem for compact semi–algebraic sets. Math. Ann. 289, 203–206 (1991) [Sh] M. Shiota. Nash Manifolds. Lect. Notes in Math. 1269. Berlin: Springer-Verlag (1987) [W] T.W¨ormann. Short algebraic proofs of theorems of Schm¨udgen and P´olya. to appear
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09.pdf
Size:
75.98 KB
Format:
Adobe Portable Document Format

Collections