Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Consistency in preference modelling

dc.book.titleModern Information Processing : from theory to applications
dc.contributor.authorGarcía Lapresta, J. L.
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.editorBouchon-Meunier, Bernadette
dc.contributor.editorColetti, Giulianella
dc.contributor.editorYager, Ronald R.
dc.date.accessioned2023-06-20T13:42:10Z
dc.date.available2023-06-20T13:42:10Z
dc.date.issued2006
dc.description.abstractCoherence in preference modelling has been introduced in standard decision making frameworks, taking many different formulations in each context, as a need in order to assure consistent decision making procedures. In the classical crisp context, preferences use to be assumed to be transitive in order to assure consistent behavior. In the fuzzy framework, a standard assumption is the condition of max-min transitivity; alternatively, consistency has been understood by Cutello-Montero as a rationality measure, therefore allowing degrees of performance. In this paper we stress that, neither in the crisp nor in the fuzzy case, consistency should not be necessarily associated with underlying linear orders.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGovernment of Spain, grant
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30777
dc.identifier.isbn9780444520753
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53440
dc.language.isoeng
dc.page.final97
dc.page.initial87
dc.page.total468
dc.publication.placeAmsterdam
dc.publisherElsevier
dc.relation.projectIDBEC2001-2253
dc.relation.projectIDBFM2002-0281
dc.rights.accessRightsrestricted access
dc.subject.cdu510.64
dc.subject.keywordFuzzy preferences
dc.subject.keywordTransitivity
dc.subject.keywordCoherence measures
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleConsistency in preference modellingen
dc.typebook part
dcterms.references1. Barrett, C.R., Pattanaik, P.K., Salles, M. (1986): “On the structure of fuzzy social welfare functions”. Fuzzy Sets and Systems 19: 1–10. 2. Bezdek, J.C., Spillman, B., Spillman, R. (1978): “A fuzzy relation space for group decision theory: An application”. Fuzzy Sets and Systems 1: 255–268. 3. Cutello, V., Montero, J. (1994): “Fuzzy rationality measures”. Fuzzy Sets and Systems 62: 39–54. 4. Cutello, V., Montero, J. (1997): “Equivalence and compositions of fuzzy rationality measures”. Fuzzy Sets and Systems 85: 31–43. 5. Cutello, V., Montero, J. (1999): “Recursive connective rules”. International Journal of Intelligent Systems 14: 3–20. 6. Dasgupta, M., Deb, R. (1996): “Transitivity and fuzzy preferences”. Social Choice and Welfare 13: 305–318. 7. Fishburn, P.C. (1973): The Theory of Social Choice. Princeton University Press, Princeton. 8. Fishburn, P.C. (1973): “Binary choice probabilities: on the varieties of stochastic transitivity”. Journal of Mathematical Psychology 10: 327–352. 9. Fodor, J., Roubens, M. (1994): “Valued preference structures”. European Journal of Operational Research 79: 277–286. 10. Garcia-Lapresta, J.L., Llamazares, B.(2000): “Aggregation of fuzzy preferences:Some rules of the mean”. Social Choice and Welfare 17: 673–690. 11. Garcia-Lapresta, J.L., Meneses, L.C. (2003): “An empirical analysis of transitivity with four scaled preferential judgment modalities”. Review of Economic Design 8: 335–346. 12. Garcia-Lapresta, J.L., Meneses, L.C. (2005): “Individual valued preferences and their aggregation: Consistency analysis in a real case”. Fuzzy Sets and Systems 151: 269–284. 13. Garcia-Lapresta, J.L., Rodriguez-Palmero, C.(2004): “Some algebraic characterizations of preference structures”. Journal of Interdisciplinary Mathematics 7:233–254. 14. Goguen, J.A.: (1967): “L-fuzzy sets”. Journal of Mathematical Analysis and Applications 18: 145–174. 15. Gomez, D., Montero, J., Yañez, J., Gonzalez-Pachon, J., Cutello, V. (2004): “Crisp dimension theory and valued preference relations”. International Journal of General Systems 33: 115–131. 16. Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque,M. (2004): “Some issues on consistency of fuzzy preference relations”. European Journal of Operational Research 154: 98–109. 17. Klement, E.P., Mesiar, R., Pap, E. (2000): Triangular Norms. Kluwer, Dordrecht. 18. Klir, G.J., Folger, T.A. (1988): Fuzzy Sets,Uncertainty and Information. Prentice Hall, Englewood Cliffs, NJ. 19. Luce, R.D. (1956): “Semiorders and a theory of utility discrimination”.Econometrica 24: 178–191. 20. Luce, R.D., Suppes, P. (1965): “Preferences, utility and subjective probability”. In: Handbook of Mathematical Psychology III, R.D. Luce et al. (eds.), Wiley,New York; chap. 19. 21. May, K.O. (1952): “A set of independent necessary and sufficient conditions for simple majority decision”. Econometrica 20: 680–684. 22. Montero, J. (1987): “Arrow’s theorem under fuzzy rationality”. Behavioral Science 32: 267–273. 23. Montero, J. (1987): “Social welfare functions in a fuzzy environment”. Kybernetes 16: 241–245. 24. Montero, J. (2004): “Classifiers and decision makers”. In: Applied Computacional Intelligence, D. Ruan et al. (eds.), World Scientific, Singapore; pp. 19–24. 25. Montero, J., Tejada, J. (1986): “Some problems on the definition of fuzzy preference relations”. Fuzzy Sets and Systems 20: 45–53. 26. Montero, J., Tejada, J., Cutello, V. (1997): “A general model for deriving preference structures from data”. European Journal of Operational Research 98: 98–110. 27. Nakamura, K. (1992): “On the nature of intransitivity in human preferential judgements”. In: Fuzzy Approach to Reasoning and Decision–Making, Novak,V., Ramık, J. et al. (eds.), pp. 147–162. Kluwer Academic Publishers, Dordrecht. 28. Nurmi, H. (1981): “Approaches to collective decision making with fuzzy preference relations”. Fuzzy Sets and Systems 6: 249–259. 29. Orlovsky, S.A. (1978): “Decision making with a fuzzy preference relation”. Fuzzy Sets and Systems 1: 155–167. 30. Ovchinnikov, S.V. (1981): “Structure of fuzzy binary relations”. Fuzzy Sets and Systems 6: 169–195. 31. Roubens, M., Vincke, P. (1985): Preference Modelling. Lecture Notes in Economics and Mathematical Systems, vol. 250. Springer–Verlag, Berlin. 32. Pattanaik, P.K. (1971): Voting and collective choice. Cambridge U.P., Cambridge. 33. Sancho, A., Verdegay, J.L. (2004): “On the definition of coherence measure for fuzzy sets”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12: 129–144. 34. Switalski, Z. (2003): “General transitivity conditions for fuzzy reciprocal preference matrices”. Fuzzy Sets and Systems 137: 85–100. 35. Tanino, T. (1984): “Fuzzy preference orderings in group decision making”. Fuzzy Sets and Systems 12: 117–131. 36. Zadeh, L.A. (1971): “Similarity relations and fuzzy orderings”. Information Sciences 3:177–200.
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero205.pdf
Size:
147.04 KB
Format:
Adobe Portable Document Format