Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd_(0.8)Zn_(0.2)Te

dc.contributor.authorCastaldini, A.
dc.contributor.authorCavallini, A.
dc.contributor.authorFraboni, B.
dc.contributor.authorPolenta, L.
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T19:04:26Z
dc.date.available2023-06-20T19:04:26Z
dc.date.issued1996-09-15
dc.description© 1996 The American Physical Society. This research has been partially supported by the coperation Programme ‘‘Azione Integrata’’ between Italy and Spain and by DGICYT (Project No. PB93-1256).The authors are indebted to Professor F. Casali for providing thesamples.
dc.description.abstractDeep levels in Cd_(1-x)Zn_xTe have not yet been fully characterized and understood, even though this material is very promising for medical and optoelectronic applications. We have investigated p-type semi-insulating Cd_(0.8)Zn_(0.2)Te with cathodoluminescence (CL) and photoinduced current transient spectroscopy (PICTS) methods. PICTS analyses allow detection of deep levels which are not revealed by other current spectroscopy techniques generally used, as they permit scanning of a wider region of the energy gap. Five levels have been detected (0.16, 0.25, 0.57, 0.78, and 1.1 eV) and, by combining the results obtained with the above-mentioned CL techniques, we were able to advance hypotheses on the character (donor or acceptor) and origin of some of these levels. The key role prayed by the 0.78-eV level in controlling the carrier transport properties has also been confirmed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26727
dc.identifier.doi10.1103/PhysRevB.54.7622
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.54.7622
dc.identifier.relatedurlhttp://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.7622
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59207
dc.issue.number11
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final7625
dc.page.initial7622
dc.publisherAmerican Physical Society
dc.relation.projectIDPB93-1256
dc.relation.projectIDAzione Integrata
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDeep-Level
dc.subject.keywordk CdTe-V
dc.subject.keywordCrystals
dc.subject.keywordCd_(1-X)Zn_xTe
dc.subject.keywordPhotoluminescence
dc.subject.keywordDetectors
dc.subject.ucmFísica de materiales
dc.titleCathodoluminescence and photoinduced current spectroscopy studies of defects in Cd_(0.8)Zn_(0.2)Te
dc.typejournal article
dc.volume.number54
dcterms.references1. C. Barnett Davis, D. D. Allred, A. Reyes-Mena, J. Gonzalez-Hernández, O. Gonzales, B. C. Hess, and W. P. Allred, Phys. Rev. B 47, 13 363 (1993). 2. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London, 1992), Chap. 9, pp. 478–497. 3. C. Hurtes, M. Boulou, M. Mitonneau, and D. Bois, Appl. Phys. Lett. 32, 821 (1978). 4. Z. Fang, L. Shan, T. E. Schlesinger, and A. G. Milnes, Solid State Electron. 32, 405 (1989) 5. S. Fuyuki, N. Hyakutake, and S. Hayakawa, Jpn. J. Appl. Phys. 17, 851 (1978). 6. K. Suzuki, K. Inagaki, N. Kumura, I. Tsubono, T. Sawada, K. Imai, and S. Seto, Phys. Status Solidi A 147, 203 (1995). 7. Y. P. Varshni, Physica 34, 149 (1967). 8. E. Lopez-Cruz, J. Gonzalez-Hernandez, D. D. Allred, and W. P. Allred, J. Vac. Sci. Technol. A 8, 1934 (1990). 9. D. M. Hofmann, W. Stadler, K. Oettinger, B. K. Meyer, P. Omling, M. Salk, K. W. Benz, E. Weigel, and G. Müller-Vogt,Mater. Sci. Eng. B 16, 128 (1993). 10. M. Fiederle, D. Ebling, C. Eiche, D. M. Hofmann, M. Salk, W. Stadler, K. W. Benz, and B. K. Meyer, J. Cryst. Growth 138, 529 (1994). 11. C. Eiche, D. Maier, D. Sinerius, J. Weese, K. W. Benz, and J. Honerkamp, J. Appl. Phys. 74, 6667 (1993) 12. D. M. Hofmann, D. Omling, H. G. Grimmeiss, B. K. Meyer, K. W. Benz, and D. Sinerius, Phys. Rev. B 45, 6247 (1992). 13. J. P. Zielinger, M. Tapiero, Z. Guellil, G. Roosen, P. Delaye, J. C. Launay, and W. Mazoyer, Mater. Sci. Eng. B 16, 273 (1993). 14. M. Hage-Ali and P. Siffert, Nucl. Instrum. Methods Phys. Res.Sect. A 322, 313 (1992). 15. W. Stadler, D. M. Hoffman, H. C. Alt, T. Muschik, B. K. Meyer,E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, Phys. Rev. B 51, 10 619 (1995). 16. J. W. Allen, Semicond. Sci. Technol. 10, 1049 (1995). 17. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, and J. Piqueras (unpublished). 18. T. L. Larsen, C. F. Varotto, and D. A. Stevenson, J. Appl. Phys. 43, 172 (1972). 19. F. Schmidlin and G. Roberts, Phys. Rev. Lett. 20, 1173 (1968). 20. U. Pal, J. Piqueras, P. Fernandez, M. D. Serrano, and E. Dieguez, J. Appl. Phys. 76, 3720 (1994). 21. U. Pal, P. Fernandez, J. Piqueras, N. V. Suchinski, and E. Dieguez, J. Appl. Phys. 78, 1992 (19959. 22. H.-X. Han, B. J. Feldman, M. L. Wroge, D. J. Leopold, and J. M. Ballingall, J. Appl. Phys. 61, 2670 (1987). 23. P. Moravec, M. Hage-Ali, L. Chibani, and P. Siffert, Mater. Sci. Eng. B 16, 223 (1993). 24. P. Höschl, P. Moravec, J. Franc, E. Belas, and R. Grill, Nucl. Instrum. Methods Phys. Res. Sect. A 322, 371 (1992). 25. N. V. Agrinskaya and E. N. Arkadeva, Nucl. Instrum. Methods Phys. Rev. Sect. A 283, 260 (1989).
dspace.entity.typePublication
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoverydaf4b879-c4a8-4121-aaff-e6ba47195545

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ224libre.pdf
Size:
76.63 KB
Format:
Adobe Portable Document Format

Collections