Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gas diffusion electrodes on the electrosynthesis of controllable iron oxide nanoparticles

dc.contributor.authorPrato, Rafael A
dc.contributor.authorVan Vught, Vincent
dc.contributor.authorEggermont, Sam
dc.contributor.authorPozo, Guillermo
dc.contributor.authorMarín Palacios, María Pilar
dc.contributor.authorFransaer, Jan
dc.contributor.authorDominguez-Benetton, Xochitl
dc.date.accessioned2023-06-16T15:15:38Z
dc.date.available2023-06-16T15:15:38Z
dc.date.issued2019-10-25
dc.description©2019 Nature Publishing Group R.P. acknowledges VITO Strategic PhD grant funding No. 1510774. R.P., G.P., J.F. and X.D.B. thank the support from the Flemish SIM MaRes programme, under grant agreement No. 150626 (Get-A-Met project). X.D.B. and J.F. thanks the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654100 (CHPM2030 project). G. Pozo acknowledges the funding from the European Union's Horizon 2020 research and innovation programme MSCA-IF-2017, under grant agreement No. 796320 (MAGDEx: Unmet MAGnetic properties in micro and nano-particles by synthesis through gas diffusion electrocrystallisation, (GDEx). This work has been supported by the Ministerio Espanol de Economia y Competitividad (MINECO) MAT201567557-C2-1-P, and Comunidad de Madrid S2013/MIT-2850 NANOFRONTMAG projects. We would also like to acknowledge Myriam Mertens for fruitful discussions and her support on XRD analysis, as well as Kristof Tirez and Wilfried Brusten for assistance with analytical measurements. We thank Dr. Vitaliy Bliznuk (UGent, Electron microscopy laboratory) for assisting in TEM analysis.
dc.description.abstractThe electrosynthesis of iron oxide nanoparticles offers a green route, with significant energy and environmental advantages. Yet, this is mostly restricted by the oxygen solubility in the electrolyte. Gas-diffusion electrodes (GDEs) can be used to overcome that limitation, but so far they not been explored for nanoparticle synthesis. Here, we develop a fast, environmentally-friendly, room temperature electrosynthesis route for iron oxide nanocrystals, which we term gas-diffusion electrocrystallization (GDEx). A GDE is used to generate oxidants and hydroxide in-situ, enabling the oxidative synthesis of a single iron salt (e.g., FeCl_2) into nanoparticles. Oxygen is reduced to reactive oxygen species, triggering the controlled oxidation of Fe^(2+) to Fe^(3+), forming Fe_(3-x)O_(4-x) (0 <= x <= 1). The stoichiometry and lattice parameter of the resulting oxides can be controlled and predictively modelled, resulting in highly-defective, strain-heavy nanoparticles. The size of the nanocrystals can be tuned from 5 nm to 20 nm, with a large saturation magnetization range (23 to 73 A m^2 kg^(-1)), as well as minimal coercivity (similar to 1 kA m^(-1)). Using only air, NaCl, and FeCl_2, a biocompatible approach is achieved, besides a remarkable level of control over key parameters, with a view on minimizing the addition of chemicals for enhanced production and applications.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipVITO Strategic PhD grant
dc.description.sponsorshipFlemish SIM MaRes programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58641
dc.identifier.doi10.1038/s41598-019-51185-x
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/s41598-019-51185-x
dc.identifier.relatedurlhttps://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6010
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.projectIDCHPM2030 (654100) ; MAGDEx (796320)
dc.relation.projectIDMAT201567557-C2-1-P
dc.relation.projectIDNANOFRONTMAG-CM (S2013/MIT-2850)
dc.relation.projectID1510774
dc.relation.projectIDGet-A-Met (150626)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordMagnetite nanoparticles
dc.subject.keywordX-ray
dc.subject.keywordSize
dc.subject.keywordQuantification
dc.subject.keywordBehavior
dc.subject.keywordDefects
dc.subject.keywordOxygen
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleGas diffusion electrodes on the electrosynthesis of controllable iron oxide nanoparticles
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication7fdc4e1c-351d-4061-9ee4-3369d55a3feb
relation.isAuthorOfPublication.latestForDiscovery7fdc4e1c-351d-4061-9ee4-3369d55a3feb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarinP 01 libre+CC.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format

Collections