Direct correlation-function of a one-dimensional nematic fluid

dc.contributor.authorFernández Tejero, Carlos
dc.contributor.authorCuesta, J. A.
dc.date.accessioned2023-06-20T18:54:17Z
dc.date.available2023-06-20T18:54:17Z
dc.date.issued1990-10-15
dc.description© 1990 Elsevier Science Publishers B.V. This work has been supported by a grant from the DGICYT (Spain) under no. PB88-0140.
dc.description.abstractThe direct correlation function of a Huid of aligned planar hard convex orientable bodies is determined exactly using a simple form for the separation of the centers at contact. An approximate analytical proposal for the direct correlation function in terms of a reference direct correlation function of a fluid of spherical molecules is shown to lead to the exact equation of state in the high-pressure limit.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23986
dc.identifier.doi10.1016/0378-4371(90)90264-S
dc.identifier.issn0378-4371
dc.identifier.officialurlhttp://dx.doi.org/10.1016/0378-4371(90)90264-S
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58896
dc.issue.number3
dc.journal.titlePhysica A: Statistical Mechanics and its Applications
dc.language.isoeng
dc.page.final956
dc.page.initial942
dc.publisherElsevier
dc.relation.projectIDPB88-0140
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleDirect correlation-function of a one-dimensional nematic fluid
dc.typejournal article
dc.volume.number168
dcterms.references[l] P.G. de Gennes, The Physics of Liquid Crystals (Clarendon. Oxford, 1974). [2] D. Frenkel, J. Phys. Chem. 92 (1988) 3280. [3] T. Boublik. Mol. Phys. 29 (1975) 421. [4] T. Boublik and I. Nezbeda, Coll. Czech. Chem. Comm. 51 (1986) 2301. [5] F.H. Ree and W.G. Hoover, J. Chem. Phys. 40 (1963) 939. [6] B.J. Berne and P. Pechukas, J. Chem. Phys. 56 (1972) 4213. [7] R. Evans. Adv. Phys. 28 (1979) 143. [8] M. Baus, J.L. Colot, X.G. Wu and H. Xu, Phys. Rev. Lett. 59 (1987) 2184. J.L. Colot, X.G. Wu, H. Xu and M. Baus. Phys. Rev. A 38 (1988) 2022. [9] J.A. Cuesta, C.F. Tejero and M. Baus, Phys. Rev. A 39 (1989) 6498. [10] L.S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17 (1914) 793. [11] R. Pynn, J. Chem. Phys. 60 (1974) 4579. [12] M.S. Wertheim, Phys. Rev. Lett. 10 (1963) 321; J. Mat. Phys. 5 (1964) 643. [13] E. Thiele, J. Chem. Phys. 39 (1963) 474. [14] J.K. Percus and G.J. Yevick, Phys. Rev. 110 (1958) 1. [15] F. Lado, Mol. Phys. 54 (1985) 407. [16] J.L. Lebowitz, J.K. Percus and T. Talbot, J. Stat. Phys. 49 (1987) 1221. [17] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York. 1972). [18] D. Frenkel, Mol. Phys. 54 (1985) 145. [19] J.K. Percus. in: Simple Models of Equilibrium and Nonequilibrium Phenomena, J.L. Lebowitz, ed. (North-Holland, Amsterdam, 1987). [20] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986). [21] R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley, New York, 1953). [22] C.G. Gray and K.E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984). [23] D. Frenkel and B.H. Mulder, Mol. Phys. 55 (1985) 1171. [24] J.A. Cuesta and D. Frenkel, to be published.
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero31.pdf
Size:
804.13 KB
Format:
Adobe Portable Document Format

Collections