Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deposition of low temperature Si-based insulators by the electron cyclotron resonance plasma method

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorGarcía, S.
dc.contributor.authorMartín, J.M.
dc.contributor.authorFernández, M.
dc.date.accessioned2023-06-20T19:08:13Z
dc.date.available2023-06-20T19:08:13Z
dc.date.issued1998-04-01
dc.descriptionEuropean Vacuum Conference (EVC 5) / International Conference on Thin Films (ICTF 10) (5th / 10th. 1996. Salamanca, Spain). (C) Elsevier Science SA.
dc.description.abstractThe influence of the gas flow ratio (R) (O-2/SiH4 and N-2/SiH4) and the deposition temperature on the physical properties of SiOy and SiNx:H thin films deposited by the ECR-CVD method is analyzed. Two deposition regimes limited by R = 1, are found for SiOy films. At R < 1, films are very Si-rich in nature, with [O]/[Si] ratios as low as 0.55. At R > 1, the [O]/[Si] ratio varies between 1.69 and 1.88 and the full width at half maximum of the Si-O stretching peak is almost kept constant at 90 cm(-1). The effect of increasing substrate temperatures is mainly to promote a nearest stoichiometric character of the films. The two deposition regimes described agree with the optical diagnosis of the discharge, that present Si related species in those created at R < 1, and OH and O-2(+) species in those created at R > I. A similar trend is observed for the deposition of SiNx:H films, for which the limiting gas flow ratio is also R = I. At R < 1, the films are very Si-rich (x less than or equal to 0.38), meanwhile at R > 1, the composition corresponds to near stoichiometric and N-rich films (x = 0.91-1.49). The main effect of the substrate temperature is to reduce the hydrogen content of the films. Both SiOy and SINx:H films are used in Si-based MIS structures, for those the minimum density of interface states is 3 X 10(11) cm(-2) eV(-1).
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27056
dc.identifier.doi10.1016/S0040-6090(97)00510-5
dc.identifier.issn0040-6090
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0040-6090(97)00510-5
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59296
dc.issue.number01-02
dc.journal.titleThin Solid Films
dc.language.isoeng
dc.page.final119
dc.page.initial116
dc.publisherElsevier Science SA
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordSilicon-Nitride
dc.subject.keywordHydrogen Content
dc.subject.keywordH Fiolms
dc.subject.keywordRoom-Temperature
dc.subject.keywordAmorphous Sinx.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleDeposition of low temperature Si-based insulators by the electron cyclotron resonance plasma method
dc.typejournal article
dc.volume.number317
dcterms.references1) Y. Ma, T. Yasuda, G. Lucovsky, Appl. Phys. Lett., 64, 1994, 2226. 2) J.R. Flemish, R.L. Pfeffer, J. Appl. Phys., 74, 1993, 3277. 3) D.E. Kotecki, J.D. Chapple-Sokol, J. Appl. Phys., 77, 1995, 1285. 4) W.A. Lanford, M.J. Rand, J. Appl. Phys., 49, 1978, 2473. 5) G. Lucovsky, J.T. Fitch, D.V. Tsu, S.S. Kim, J. Vac. Sci. Technol. A, 7, 1989, 1136. 6) T.V. Herak, T.T. Chau, D.J. Thomson, S.R. Mejia, D.A. Buchanan, K.C. Kao, J. Appl. Phys., 65, 1989, 2457. 7) M.J. Hernández, J. Garrido, J. Piqueras, J. Vac. Sci. Technol. B, 12, 1994, 581. 8) S. Hasegawa, M. Matuura, H. Anbutu, Y. Kurata, Phil. Mag. B, 56, 1987, 633. 9) A.D. Stewart, D.I. Jones, Phil. Mag. B, 57, 1988, 431. 10) W.A.P. Claassen, W.G.J.N. Valkenburg, F.H.P.M. Habraken, Y. Tamminga, J. Electrochem. Soc., 130, 1983, 2419. 11) S. García, J.M. Martín, M. Fernández, I. Mártil, G. González-Díaz, Phil. Mag. B, 73, 1996, 487. 12) S. García, D. Bravo, M. Fernández, I. Mártil, F.J. López, Appl. Phys. Lett., 67, 1995, 3263. 13) T.T. Chau, S.R. Mejia, K.C. Kao, Electron. Lett., 25, 1989, 1088. 14) S.V. Hattangady, G.G. Fountain, R.A. Rudder, R.J. Markunas, J. Vac. Sci. Technol. A, 7, 1989, 570.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,95.pdf
Size:
131.43 KB
Format:
Adobe Portable Document Format

Collections