A robust method for fast exploration of environments with moving obstacles
| dc.contributor.author | Oleaga Apadula, Gerardo Enrique | |
| dc.contributor.author | Ortega Lozano, Daniel | |
| dc.contributor.author | Makarov Slizneva, Valeriy | |
| dc.date.accessioned | 2026-01-14T15:58:45Z | |
| dc.date.available | 2026-01-14T15:58:45Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Exploring environments with static and moving obstacles is a fundamental problem with numerous applications in physics and engineering. The Fast Marching Method (FMM) offers a computationally efficient numerical solution to the Eikonal equation, which describes a wavefront propagating through a medium. The FMM is effective in media with static obstacles, but, as we show, it fails in the presence of moving ones. We introduce a novel, robust method for wave exploration of environments of arbitrary dimension and complexity, and prove its convergence numerically. The method accurately handles both dynamic and static obstacles while preserving the computational efficiency of the FMM, ensuring a fast and reliable global search for collisionfree trajectories. The algorithm can also serve as an interception strategy for catching a moving target among many obstacles. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
| dc.description.refereed | FALSE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1016/j.jcp.2025.114538 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.jcp.2025.114538 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/130239 | |
| dc.journal.title | Journal of Computational Physics | |
| dc.language.iso | eng | |
| dc.page.initial | 114538 (20) | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124047NB-I00/ES/FUNDAMENTOS MATEMATICOS DE LA COGNICION PROFUNDA: HACIA EL DESARROLLO DE AGENTES AUTONOMOS BIOINSPIRADOS/ | |
| dc.relation.projectID | FPU22/01848 | |
| dc.rights | Attribution-NonCommercial 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.keyword | Fast marching method | |
| dc.subject.keyword | Wavefront | |
| dc.subject.keyword | Mobile obstacle | |
| dc.subject.keyword | Pathplanning | |
| dc.subject.ucm | Ecuaciones diferenciales | |
| dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | |
| dc.title | A robust method for fast exploration of environments with moving obstacles | |
| dc.type | journal article | |
| dc.type.hasVersion | VoR | |
| dc.volume.number | 547 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f | |
| relation.isAuthorOfPublication | a5728eb3-1e14-4d59-9d6f-d7aa78f88594 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f |
Download
Original bundle
1 - 1 of 1


