Hodge polynomials of the moduli spaces of triples of rank (2,2).
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Ortega, Daniel | |
dc.contributor.author | Vázquez Gallo, M. Jesús | |
dc.date.accessioned | 2023-06-20T10:34:15Z | |
dc.date.available | 2023-06-20T10:34:15Z | |
dc.date.issued | 2009 | |
dc.description.abstract | Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A holomorphic triple (E1, E2, φ) on X consists of two holomorphic vector bundles E1 and E2 over X and a holomorphic map φ: E2 → E1. There is a concept of stability for triples which depends on a real parameter σ. In this paper, we determine the Hodge polynomials of the moduli spaces of σ-stable triples with rk(E1) = rk(E2) = 2, using the theory of mixed Hodge structures (in the cases that they are smooth and compact). This gives in particular the Poincar´e polynomials of these moduli spaces. As a byproduct, we also give the Hodge polynomial of the moduli space of even degree rank 2 stable vector bundles. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20887 | |
dc.identifier.doi | 10.1093/qmath/han007 | |
dc.identifier.issn | 0033-5606 | |
dc.identifier.officialurl | http://qjmath.oxfordjournals.org/content/60/2/235 | |
dc.identifier.relatedurl | http://arxiv.org/pdf/math/0701642v1.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50580 | |
dc.issue.number | 2 | |
dc.journal.title | Quarterly Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 272 | |
dc.page.initial | 235 | |
dc.publisher | Oxford University Press | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Moduli space | |
dc.subject.keyword | Complex curve | |
dc.subject.keyword | Stable triple | |
dc.subject.keyword | Hodge polynomial. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Hodge polynomials of the moduli spaces of triples of rank (2,2). | |
dc.type | journal article | |
dc.volume.number | 60 | |
dcterms.references | Alvarez-Consul, L.; Garcıa-Prada, O.: Dimensional eduction, SL (2,C)-equivariant bundles, and stable holomorphic chains. Internat. J. Math. 12 (2001) 159–201. Alvarez-Consul, L.; Garcıa-Prada, O.; Schmitt, A.: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. Internat. Math. Res. Papers, Art ID 73597 (2006) 1–82. Bradlow, S. B.; Daskalopoulos: Moduli of stable pairs for holomorphic bundles over Riemann surfaces.Internat. J. Math. 2 (1991) 477–513. Bradlow, S. B.; Garcıa–Prada, O.: Stable triples, equivariant bundles and dimensional reduction. Math.Ann. 304 (1996) 225–252. Bradlow, S. B.; Garcıa–Prada, O.; Gothen, P.B: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328 (2004) 299–351. Burillo, J.: El polinomio de Poincar´e–Hodge de un producto sim´etrico de variedades k¨ahlerianas compactas.Collect. Math. 41 (1990) 59–69. Del Bano, S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compositio Math.131 (2002) 1–30. Deligne, P.: Th´eorie de Hodge I,II,III. In Proc. I.C.M.,vol. 1, 1970, pp. 425–430; in Publ. Math. I.H.E.S.40 (1971) 5–58; ibid. 44 (1974) 5–77. Deligne, P.: Theoreme de Lefschetz et criteres de d´egenerescence de suites spectrales. Publ. Math. I.H.E.S.35 (1968) 259–278. Durfee, A.H.: Algebraic varieties which are a disjoint union of subvarieties, Lecture Notes in Pure Appl.Math. 105, Marcel Dekker, 1987, pp. 99–102. Danivol, V.I.; Khovanskiı, A.G.: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math.U.S.S.R. Izvestiya 29 (1987) 279–298. Earl, R.; Kirwan, F.: The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface.Q. J. Math. 51 (2000) 465–483. Fulton, W.; MacPherson, R.: A compactification of configuration spaces. Annals of Math. 139 (1994)183–225. Garcıa–Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Internat. J. Math.5 (1994) 1–52. Garcıa–Prada, O.; Gothen, P.B.; Munoz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Memoirs Amer. Math. Soc. In press. Gothen, P.B.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface.Internat. J. Math. 5 (1994) 861–875. Gothen, P.B., King, A.D.: Homological algebra of quiver bundles. J. London Math. Soc. (2) 71 (2005)85–99. Griffiths, P.: Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping. Publ. Math. I.H.E.S. 38 (1970) 125–180. Hitchin, N.J.: The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987)59–126. Kirwan, F.: On the homology of compactifications of moduli spaces of vector bundles over a Riemann surface. Proc. London Math. Soc. (3) 53 (1986) 237–266. Munoz, V.; Ortega, D.; V ˜ azquez-Gallo, M-J.: Hodge polynomials of the moduli spaces of pairs.Internat.J. Math. In press. Narasimhan, M. S.; Ramanan, S.: Geometry of Hecke cycles. I. C. P. Ramanujam—a tribute, pp. 291–345,Tata Inst. Fund. Res. Studies in Math. 8, Springer, Berlin-New York, 1978. Schmitt, A.: A universal construction for the moduli spaces of decorated vector bundles. Transform. Groups 9 (2004) 167–209. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117 (1994) 317–353 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1