Separation, factorization and finite sheaves on Nash manifolds
dc.contributor.author | Coste, M. | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.contributor.author | Shiota, Masahiro | |
dc.date.accessioned | 2023-06-20T18:41:12Z | |
dc.date.available | 2023-06-20T18:41:12Z | |
dc.date.issued | 1996-08 | |
dc.description.abstract | Nash functions are those real analytic functions which are algebraic over the polynomials. Let M⊂Rn be a Nash manifold, N(M) the ring of Nash functions on M and O(M) the ring of analytic functions on M. The following problems have been open for at least twenty years: (1) Separation problem: Let G be a prime ideal of N(M); is G⋅O(M) a prime ideal? (2) Factorisation problem: Given f∈N(M) and an analytic factorisation f=f1⋅f2, do there exist Nash functions g1,g2 on M and positive analytic functions φ1,φ2 such that φ1⋅φ2=1 and f1=φ1g1, f2=φ2g2? (3) Global equations problem: Is every finite sheaf I of ideals of N generated by global Nash functions? (4) Extension problem: For the same I as above, is the natural homomorphism H0(M,N)→H0(M,N/I) surjective? The main results of this paper are: Theorem. For any Nash manifold M, Problem 1 has a positive answer if and only if Problem 3 (or Problem 4) have a positive answer. Problem 3 has a positive answer for any locally principal finite sheaf if and only if Problem 2 has a positive answer. It is interesting to remark that the authors, in a recent paper, have proved that the above problems have a positive answer under the hypothesis that M be compact. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20011 | |
dc.identifier.issn | 0010-437X | |
dc.identifier.officialurl | http://archive.numdam.org/ARCHIVE/CM/CM_1996__103_1/CM_1996__103_1_31_0/CM_1996__103_1_31_0.pdf | |
dc.identifier.relatedurl | http://www.numdam.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58304 | |
dc.issue.number | 1 | |
dc.journal.title | Compositio Mathematica | |
dc.language.iso | eng | |
dc.page.final | 62 | |
dc.page.initial | 31 | |
dc.publisher | Cambridge University Press | |
dc.relation.projectID | PB92-0498-C02-02 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 510.22 | |
dc.subject.cdu | 515.1 | |
dc.subject.cdu | 515.171.5 | |
dc.subject.keyword | Extension theorem | |
dc.subject.keyword | Nash functions | |
dc.subject.keyword | Nash manifolds | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Teoría de conjuntos | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1201.02 Teoría Axiomática de Conjuntos | |
dc.subject.unesco | 1210 Topología | |
dc.title | Separation, factorization and finite sheaves on Nash manifolds | |
dc.type | journal article | |
dc.volume.number | 103 | |
dcterms.references | D'Angelo, J.: Orders of contact of real and complex subvarieties, Illinois J. Math. 26 (1982) 41-51. Artin, M.: Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S. 36 (1969) 23-58. Benedetti, R. and Tognoli, A.: On real algebraic vector bundles, Bull. Sc. Math. 104 (1980) 89-102. Beretta, L. and Tognoli, A.: Nash sets and global equations, Bolletino U.M.I. (7) 4-A (1990) 31-44. Bochnak, J., Coste, M. and Roy, M-F.: Géométrie algébrique réelle, Springer 1987. Coste, M., Ruiz, J.M. and Shiota, M.: Approximation in compact Nash manifolds, Amer. J. Math. 117 (1995) 1-23. Efroymson, G.: Nash rings in planar domains, Trans. Amer. Math. Soc. 249 (1979) 435-445. Efroymson, G.: The extension theorem for Nash functions, in: Géométrie algébrique réelle et formes quadratiques, 343-357, Lecture Notes in Math. 959, Springer 1982. El Khadiri, A. and Tougeron, J-C.: Familles noethériennes de modules sur k[[X]] et applications, to appear in Bull. Sc. Math. Fortuna, E., Lojasiewicz, S. and Raimondo, M.: Algebricité de germes analytiques, J. reine angew. Math. 374 (1987) 208-213. Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall 1965. Hubbard, J.: On the cohomology of Nash sheaves, Topology 11 (1972) 265-270. Huber, R.: Isoalgebraische Räume, thesis, Regensburg 1984. Knebusch, M.: Isoalgebraic geometry: first steps, in: Sém. Delange-Pisot-Poitou (1980-81) 215-220Progress in Math. 22, Birkhäuser 1982. Mora, F. and Raimondo, M.: Sulla fattorizzazzione analitica delle funzioni di Nash, Le Matematiche 37 (1982) 251-256. Mostowski, T.: Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa 3 (1976) 245-266. Pecker, D.: On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra 37 (1985) 193-203. Quarez, R.: The idempotency of the real spectrum implies the extension theorem for Nash functions, preprint, Rennes 1994. Ruiz, J.M. and Shiota, M.: On global Nash functions, Ann. scient. Éc. Norm. Sup. 27 (1994) 103-124. Shiota, M.: On the unique factorization of the ring of Nash functions, Publ. RIMS Kyoto Univ. 17 (1981) 363-369. Shiota, M.: Nash manifolds, Lecture Notes in Math. 1269, Springer 1987. Shiota, M.: Extension et factorisation de fonctions de Nash C∞, C. R. Acad. Sci. Paris 308 (1989) 253-256. Thom, R.: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17-86. Tancredi, A. and Tognoli, A.: On the extension of Nash functions, Math. Ann. 288 (1990) 595-604. Tognoli, A.: Algebraic geometry and Nash functions, Institutiones Math. 3, Academic Press 1978. Whitney, H. and Bruhat, F.: Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Math. Helvet. 33 (1959) 132-160. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1