Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Separation, factorization and finite sheaves on Nash manifolds

dc.contributor.authorCoste, M.
dc.contributor.authorRuiz Sancho, Jesús María
dc.contributor.authorShiota, Masahiro
dc.date.accessioned2023-06-20T18:41:12Z
dc.date.available2023-06-20T18:41:12Z
dc.date.issued1996-08
dc.description.abstractNash functions are those real analytic functions which are algebraic over the polynomials. Let M⊂Rn be a Nash manifold, N(M) the ring of Nash functions on M and O(M) the ring of analytic functions on M. The following problems have been open for at least twenty years: (1) Separation problem: Let G be a prime ideal of N(M); is G⋅O(M) a prime ideal? (2) Factorisation problem: Given f∈N(M) and an analytic factorisation f=f1⋅f2, do there exist Nash functions g1,g2 on M and positive analytic functions φ1,φ2 such that φ1⋅φ2=1 and f1=φ1g1, f2=φ2g2? (3) Global equations problem: Is every finite sheaf I of ideals of N generated by global Nash functions? (4) Extension problem: For the same I as above, is the natural homomorphism H0(M,N)→H0(M,N/I) surjective? The main results of this paper are: Theorem. For any Nash manifold M, Problem 1 has a positive answer if and only if Problem 3 (or Problem 4) have a positive answer. Problem 3 has a positive answer for any locally principal finite sheaf if and only if Problem 2 has a positive answer. It is interesting to remark that the authors, in a recent paper, have proved that the above problems have a positive answer under the hypothesis that M be compact.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20011
dc.identifier.issn0010-437X
dc.identifier.officialurlhttp://archive.numdam.org/ARCHIVE/CM/CM_1996__103_1/CM_1996__103_1_31_0/CM_1996__103_1_31_0.pdf
dc.identifier.relatedurlhttp://www.numdam.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58304
dc.issue.number1
dc.journal.titleCompositio Mathematica
dc.language.isoeng
dc.page.final62
dc.page.initial31
dc.publisherCambridge University Press
dc.relation.projectIDPB92-0498-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.cdu510.22
dc.subject.cdu515.1
dc.subject.cdu515.171.5
dc.subject.keywordExtension theorem
dc.subject.keywordNash functions
dc.subject.keywordNash manifolds
dc.subject.ucmGeometria algebraica
dc.subject.ucmTeoría de conjuntos
dc.subject.ucmTopología
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1201.02 Teoría Axiomática de Conjuntos
dc.subject.unesco1210 Topología
dc.titleSeparation, factorization and finite sheaves on Nash manifolds
dc.typejournal article
dc.volume.number103
dcterms.referencesD'Angelo, J.: Orders of contact of real and complex subvarieties, Illinois J. Math. 26 (1982) 41-51. Artin, M.: Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S. 36 (1969) 23-58. Benedetti, R. and Tognoli, A.: On real algebraic vector bundles, Bull. Sc. Math. 104 (1980) 89-102. Beretta, L. and Tognoli, A.: Nash sets and global equations, Bolletino U.M.I. (7) 4-A (1990) 31-44. Bochnak, J., Coste, M. and Roy, M-F.: Géométrie algébrique réelle, Springer 1987. Coste, M., Ruiz, J.M. and Shiota, M.: Approximation in compact Nash manifolds, Amer. J. Math. 117 (1995) 1-23. Efroymson, G.: Nash rings in planar domains, Trans. Amer. Math. Soc. 249 (1979) 435-445. Efroymson, G.: The extension theorem for Nash functions, in: Géométrie algébrique réelle et formes quadratiques, 343-357, Lecture Notes in Math. 959, Springer 1982. El Khadiri, A. and Tougeron, J-C.: Familles noethériennes de modules sur k[[X]] et applications, to appear in Bull. Sc. Math. Fortuna, E., Lojasiewicz, S. and Raimondo, M.: Algebricité de germes analytiques, J. reine angew. Math. 374 (1987) 208-213. Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall 1965. Hubbard, J.: On the cohomology of Nash sheaves, Topology 11 (1972) 265-270. Huber, R.: Isoalgebraische Räume, thesis, Regensburg 1984. Knebusch, M.: Isoalgebraic geometry: first steps, in: Sém. Delange-Pisot-Poitou (1980-81) 215-220Progress in Math. 22, Birkhäuser 1982. Mora, F. and Raimondo, M.: Sulla fattorizzazzione analitica delle funzioni di Nash, Le Matematiche 37 (1982) 251-256. Mostowski, T.: Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa 3 (1976) 245-266. Pecker, D.: On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra 37 (1985) 193-203. Quarez, R.: The idempotency of the real spectrum implies the extension theorem for Nash functions, preprint, Rennes 1994. Ruiz, J.M. and Shiota, M.: On global Nash functions, Ann. scient. Éc. Norm. Sup. 27 (1994) 103-124. Shiota, M.: On the unique factorization of the ring of Nash functions, Publ. RIMS Kyoto Univ. 17 (1981) 363-369. Shiota, M.: Nash manifolds, Lecture Notes in Math. 1269, Springer 1987. Shiota, M.: Extension et factorisation de fonctions de Nash C∞, C. R. Acad. Sci. Paris 308 (1989) 253-256. Thom, R.: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17-86. Tancredi, A. and Tognoli, A.: On the extension of Nash functions, Math. Ann. 288 (1990) 595-604. Tognoli, A.: Algebraic geometry and Nash functions, Institutiones Math. 3, Academic Press 1978. Whitney, H. and Bruhat, F.: Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Math. Helvet. 33 (1959) 132-160.
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho11.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format

Collections