A Strongly Interacting Electroweak Symmetry Breaking Sector with a Higgs-like light scalar.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics (AIP)
Google Scholar
Research Projects
Organizational Units
Journal Issue
The apparent finding of a 125 GeV light Higgs boson would close the minimal Standard Model (SM), that is weakly interacting. This is an exceptional feature not generally true if new physics exists beyond the mass gap found at the LHC up to 700 GeV. Any such new physics would induce departures from the SM in the low-energy dynamics for the minimal electroweak symmetry-breaking sector (EWSBS), with three Goldstone bosons (related to longitudinal W and Z bosons) and one light Higgs-like scalar. With no new particle content, for most of the parameter space, the scattering is actually strongly interacting (with the SM a remarkable exception). We therefore explore various unitarization methods, that have already be applied to the tree-level W_L W_L amplitude; we find and study a natural second sigma-like scalar pole there. Of note is its appearance due to either elastic or coupled-channel dynamics, especially since the later is largely unconstrained by current LHC data and could be large.
© 2016 AIP Publishing LLC. Conference on Quark Confinement And Hadron Spectrum (11ª. 2014. San Petersburgo, Rusia). The authors thank the usefull suggestions of María Herrero and Juan José Sanz-Cillero. A. Dobado would like to thank useful conversations with D. Espriu and J. R. Peláez for ref. [15]. RLD thanks the hospitality of the NEXT institute and the high energy group at the University of Southampton. We acknowledge the computer resources, technical expertise, and assistance provided by the BCS and the Tirant supercomputer staff at Valencia. This work is partially supported by the CICYT through the project FPA2011-27853-C02-01, by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by the Spanish MINECO supporting the work of R.L. Delgado under grant BES-2012- 056054.
Unesco subjects
1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B716, 1; Report No. ATLAS-CONF-2012-168 (2012). 2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B716, 30 (2012); Report No. CMS-HIG-12-015. 3. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 712, 22 (2012), Phys. Lett. B 722, 305 (2013); S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 704, 123 (2011) 4. Rafael L. Delgado, Antonio Dobado, Felipe J. Llanes- Estrada, (2014), arXiv:1408.1193 [hep-ph]; JHEP 1402 (2014) 121; J.Phys. G 41 (2014) 025002 5. R. L. Delgado, A. Dobado, M. J. Herrero and J. J. Sanz- Cillero, JHEP 1407 (2014) 149 [arXiv:1404.2866 [hep-ph]]; and arXiv:1409.3983 [hep-ph]. 6. T. Appelquist and C. W. Bernard, Phys. Rev. D 22 (1980) 200. 7. A. C. Longhitano, Phys. Rev. D 22 (1980) 1166; 8. K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B 719, 165 (2005); R. Contino, L. Da Rold and A. Pomarol, Phys. Rev. D 75, 055014 (2007); R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, JHEP 1110 (2011) 081; D. Barducci et al. JHEP 1309, 047 (2013). 9. E. Halyo, Mod. Phys. Lett. A 8 (1993) 275; W. D. Goldberger, B. Grinstein and W. Skiba, Phys. Rev. Lett. 100 (2008) 111802. 10. R.L. Delgado, A. Dobado, M.J. Herrero, J.J. Sanz-Cillero, JHEP 1407 (2014) 149 11. [CMS Collaboration], Collaboration report CMS-PASHIG- 14-009; [ATLAS Collaboration], Collaboration report ATLAS-CONF-2014-009. 12. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Phys. Rev. D10 (1974) 1145; C.E. Vayonakis, Lett. Nuovo Cim.17 (1976) 383; B.W. Lee, C. Quigg and H. Thacker, Phys. Rev. D16 (1977) 1519; M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. 261 (1985) 379; M. S. Chanowitz, M. Golden and H. Georgi, Phys. Rev. D36 (1987) 1490; A. Dobado J. R. Peláez Nucl. Phys. B425 (1994) 110; Phys. Lett.B329 (1994) 469 (Addendum, ibid, B335 (1994) 554). 13. A. Dobado, M. J. Herrero and T. N. Truong, Phys. Lett. B 235, 129 (1990). A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057 (1997). 14. D. Espriu, F. Mescia and B. Yencho, Phys. Rev. D 88, 055002 (2013); D. Espriu and B. Yencho, Phys.Rev. D 87, 055017 (2013). 15. K. P. Khemchandani et al., Phys. Rev. D 83, 114041 (2011); see also E. Oset and A. Ramos, Eur. Phys. J. A 44, 445 (2010). 16. S. Chatrchyan et al. [CMS Collaboration], JHEP 1307 (2013) 116 [arXiv:1305.5596 [hep-ex]]. 17. E. Chapon, C. Royon and O. Kepka, Phys. Rev. D 81 (2010) 074003 [arXiv:0912.5161 [hep-ph]]. T. Pierzchala and K. Piotrzkowski, Nucl. Phys. Proc. Suppl. 179-180 (2008) 257 [arXiv:0807.1121 [hep-ph]].