Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails

dc.contributor.authorErnst, M. H.
dc.contributor.authorBrito, Ricardo
dc.date.accessioned2023-06-20T18:44:20Z
dc.date.available2023-06-20T18:44:20Z
dc.date.issued2002-11
dc.description© 2002 Plenum Publishing Corporation. The authors want to thank A. Baldassarri et al. for making their simulation results available to them, and C. Cercignani, A. Bobylev, and A. Santos for helpful correspondence. M.E. wants to thank E. Ben-Naim for having stimulated his interest in dissipative one-dimensional Maxwell models during his stay at CNLS, Los Alamos National Laboratories in August 2000. This work is supported by DGES (Spain), Grant No BFM-2001-0291. Moreover R.B. acknowledges support of the foundation "Fundamenteel Onderzoek der Materie (FOM)," which is financially supported by the Dutch National Science Foundation (NWO).
dc.description.abstractThis paper deals with solutions of the nonlinear Boltzmann equation for spatially uniform freely cooling inelastic Maxwell models for large times and for large velocities, and the nonuniform convergence to these limits. We demonstrate how the velocity distribution approaches in the scaling limit to a similarity solution with a power law tail for general classes of initial conditions and derive a transcendental equation from which the exponents in the tails can be calculated. Moreover on the basis of the available analytic and numerical results for inelastic hard spheres and inelastic Maxwell models we formulate a conjecture on the approach of the velocity distribution function to a scaling form.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundamenteel Onderzoek der Materie (FOM)
dc.description.sponsorshipDutch National Science Foundation (NWO)
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21364
dc.identifier.doi10.1023/A:1020437925931
dc.identifier.issn0022-4715
dc.identifier.officialurlhttp://dx.doi.org/10.1023/A:1020437925931
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.relatedurlhttp://arxiv.org/pdf/cond-mat/0112417v3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58481
dc.issue.number03-abr
dc.journal.titleJournal of Statistical Physics
dc.language.isoeng
dc.page.final432
dc.page.initial407
dc.publisherSpringer
dc.relation.projectIDBFM-2001-0291
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordGranular fluids
dc.subject.keywordDynamics
dc.subject.keywordState
dc.subject.keywordFlow
dc.subject.keywordSimilarity solutions
dc.subject.keywordPower law tails
dc.subject.keywordGranular Maxwell model
dc.subject.keywordCharacteristic functions
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleScaling solutions of inelastic Boltzmann equations with over-populated high energy tails
dc.typejournal article
dc.volume.number109
dcterms.references1. G. P. Collins, A Gas of Steel Balls, Sci. Am. 284:17 (2001); F. Rouyer and N. Menon, Phys. Rev. Lett. 85:3676 (2000). 2. C.S. Campbell, Annu. Rev. Fluid Mech. 22:57 (1990). 3. N. Sela and I. Goldhirsch, Phys. Fluids 7:507 (1995). 4. T. P. C. van Noije and M. H. Ernst, Granular Matter 1:57 (1998), and cond-mat/9803042. 5. Th. Biben, Ph. A. Martin, and J. Piasecki, preprint July 2001. 6. A. Barrat, T. Biben, Z. Racz, E. Trizac, and F. van Wijland, cond-mat/0110345. 7. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54:3664 (1996). 8. J. M. Montanero and A. Santos, Granular Matter 2:53 (2000), and cond-mat/0002323. 9. M. Huthmann, J. A. G. Orza, and R. Brito, Granular Matter 2:189 (2000), and condmat/ 0004079. 10. T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59:4326 (1999). I. Pagonabarraga, E. Trizac, T. P. C. van Noije, and M. H. Ernst, Phys. Rev E 65:011303 (2002). 11. S. E. Esipov and T. Pöschel, J. Stat. Phys. 86:1385 (1997). 12. E. Ben-Naim and P. Krapivsky, Phys. Rev. E 61:R5 (2000). 13. A. V. Bobylev, J. A. Carrillo, I. M. Gamba, J. Stat. Phys. 98:743 (2000). 14. J. A. Carrillo, C. Cercignani, and I. M. Gamba, Phys. Rev. E 62:7700 (2000). 15. C. Cercignani, J. Stat. Phys. 102:1407 (2001). 16. A. Bobylev and C. Cercignani, J. Stat. Phys. 106:547 (2002). 17. R. S. Krupp, A Non-Equilibrium Solution of the Fourier Transformed Boltzmann Equation, M.S. dissertation (M.I.T., Cambridge, MA, 1967). 18. A. V. Bobylev, Sov. Phys. Dokl. 20:820 (1975). A. V. Bobylev, Sov. Phys. Dokl. 21:632 (1976). Scaling Solutions of Inelastic Boltzmann Equations 431 19. T. Krook and T. T. Wu, Phys. Rev. Lett. 36:1107 (1976). 20. M. H. Ernst, Phys. Rep. 78:1 (1981). 21. A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi, Europhys. Lett. 58:14 (2002). 22. A. Baldassarri, private communication. 23. P. Krapivsky and E. Ben-Naim, cond-mat/0111044, 2 Nov 2001, and J. Phys. A 35:L147 (2002) and Phys. Rev. E 66:011309 (2002). 24. M. H. Ernst and R. Brito, cond-mat/0111093, 6 November 2001, and Europhys. Lett. 58:182 (2002). 25. M. H. Ernst and R. Brito, Phys. Rev. E 65:040301(R) (2002). 26. B. Nienhuis, private communication, September 2001. 27. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70:1619 (1993). 28. P. K. Haff, J. Fluid Mech. 134:40 (1983). 29. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997). 30. A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi, Phys. Rev. E 65:051301 (2002). 31. A. Bobylev and C. Cercignani, Exact Eternal Solutions of the Boltzmann Equation (see http://www.math.tu-berlin.de/ ’ tmr/preprint/d.html). 32. A. Bobylev and C. Cercignani, J. Stat. Phys. 106:1039 (2002). 33. P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977). 34. C. Cercignani, The Boltzmann Equation and Its Applications (Springer Verlag, New York, 1988). 35. D. Ruelle, J. Stat. Phys. 95:393 (1999). 36. D. J. Evans and L. Rondoni, Comments on the entropy of nonequilibrium steady states, J. Stat. Phys, this issue. 37. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics, Vol. 14, Section 13.4 (Cambridge University Press, 1999). 38. A. Bobylev and C. Cercignani, private communication. 39. M. H. Ernst and R. Brito, in preparation. 40. E. W. Montroll and B. J. West, On an enriched collection of Stochastic processes, Fluctuation Phenomena, E. W. Montroll and J. L. Lebowitz, eds. (North Holland, Amsterdam, 1979).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito11preprint.pdf
Size:
267.22 KB
Format:
Adobe Portable Document Format

Collections