Predicción de series temporales en los mercados financieros
dc.contributor.advisor | García Merayo, María De Las Mercedes | |
dc.contributor.author | Lozano Martín, Pablo | |
dc.contributor.author | Pastrana García, Jaime | |
dc.contributor.author | Pezo Ortiz, Pablo Magno | |
dc.date.accessioned | 2023-10-23T17:49:23Z | |
dc.date.available | 2023-10-23T17:49:23Z | |
dc.date.issued | 2023 | |
dc.degree.title | Grado en Ingeniería Informática | |
dc.description | Trabajo de Fin de Grado en Ingeniería Informática, Facultad de Informática UCM, Departamento de Sistemas Informáticos y Computación, Curso 2022/2023. | |
dc.description.abstract | En las últimas décadas la inteligencia artificial ha experimentado un desarrollo notable, dado en parte por un incremento exponencial del poder computacional. En este contexto, se han desarrollado diversas técnicas que permiten que la propia máquina aprenda a predecir, a partir de unos ciertos datos. El presente trabajo tiene por objetivo utilizar dichas técnicas de aprendiza automático para el análisis, y estudio, del indicador bursátil IBEX35. Para ello, se recopilarán los datos de distintas variables que puedan tener relación directa con el valor de dicho indicador, tales como el índice Dow Jones, o el precio del oro. Recopilados los distintos datos, se entrenarán diversos modelos de inteligencia artificial, analizándose posteriormente los resultados obtenidos por los distintos modelos para la predicción del valor del índice. | |
dc.description.abstract | In recent decades, artificial intelligence has undergone significant development, partly driven by an exponential increase in computational power. In this context, various techniques have been developed that allow the machine itself to learn to predict based on certain data. The purpose of this study is to use these machine learning techniques for the analysis and study of the stock market indicator IBEX35. To achieve this, data from different vari- ables that may have a direct relationship with the value of this indicator will be collected, such as the Dow Jones index or the price of gold. Once the different data is collected, various artificial intelligence models will be trained, and subsequently, the results obtained by these different models for predicting the index value will be analyzed. | |
dc.description.department | Depto. de Sistemas Informáticos y Computación | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | unpub | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88370 | |
dc.language.iso | spa | |
dc.page.total | 82 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 004(043.3) | |
dc.subject.keyword | Series temporales | |
dc.subject.keyword | nteligencia artificial | |
dc.subject.keyword | Mercados financieros | |
dc.subject.keyword | IBEX35 | |
dc.subject.keyword | Aprendizaje profundo | |
dc.subject.keyword | Aprendizaje automático | |
dc.subject.keyword | Activos financieros | |
dc.subject.keyword | Time series | |
dc.subject.keyword | Artificial intelligence | |
dc.subject.keyword | Financial markets | |
dc.subject.keyword | Deep learning | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Financial assets | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 33 Ciencias Tecnológicas | |
dc.title | Predicción de series temporales en los mercados financieros | |
dc.title.alternative | Time series forecasting in financial markets | |
dc.type | bachelor thesis | |
dc.type.hasVersion | AM | |
dspace.entity.type | Publication | |
relation.isAdvisorOfPublication | 28ca46b8-d1eb-42e6-a6e2-f31b193b055b | |
relation.isAdvisorOfPublication.latestForDiscovery | 28ca46b8-d1eb-42e6-a6e2-f31b193b055b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2167181651 - PABLO MAGNO PEZO ORTIZ - 79831_PABLO_MAGNO_PEZO_ORTIZ_TFG_2404378_897040353.pdf
- Size:
- 2.92 MB
- Format:
- Adobe Portable Document Format