Decoupling of supersymmetric particles

Thumbnail Image
Full text at PDC
Publication Date
Herrero, M. J.
Peñaranda, S.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Springer Verlag
Google Scholar
Research Projects
Organizational Units
Journal Issue
The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the effective action for the particles of the Standard Model that results by integrating out all the sparticles in the limit where their masses are larger than the electroweak scale. The computation of the effective action for the standard electroweak gauge bosons W+/-, Z and gamma is performed by integrating out all the squarks, sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of the electroweak gauge bosons to be Valid in that limit are presented. Finally, the decoupling of sparticles in the S, T and U parameters is studied analitically. A discussion on how the decoupling takes place in terms of both the physical sparticle masses and the not-physical mass parameters as the mu-parameter and the soft-breaking parameters is included.
© Springer-Verlag 1999
Unesco subjects
1. For an introduction to supersymmetry see, e.g. J. Wess, J. Bagger, Supersymmetry and Supergravity, Princenton University Press, (1983); N.P. Nilles, Phys. Rep. 110, 1 (1984); D. Bailin, A. Love, Supersymmetric Gauge Field Theory and String Theory, Institute of Physics Publishing, (1996) 2. H. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985); J.F. Gunion, H. Haber, Nucl. Phys. B 272, 1 (1986); Nucl. Phys. B 278, 449 (1986) 3. Particle Data Book, Phys. Rev. D 54, 1 (1996) 4. L. Girardello, M.T. Grisaru, Nucl. Phys. B 194, 65 (1982) 5. For a pedagogical introduction to the MSSM see, H. Haber, Introductory low-energy supersymmetry. Published in Boulder TASI-92:589-688, Univ. of Colorado, SCIPP-92/93, hep-ph/9306207 6. P.H. Chankowski et al, Nucl. Phys. B 17, 101 (1994) 7. H. Haber, When are radiative corrections important in the Minimal Supersymmetric Model. (UC, Santa Cruz). SCIPP-93-06, Mar 1993. 52pp. roceedings of INFN Eloisatron Project: 23rd Workshop: The Decay Properties of SUSY Particles, Erice, Italy, 28 Sep-4 Oct 1992. In *Erice 1992, 23rd Eloisatron workshop, Properties of SUSY particles *321-372, hep- 9305248 8. D. García, J. Solá, Mod. Phys. Lett. A 9, 211 (1994); D. García, J. Solá, R.A. Jiménez, Phys. Lett. B 347, 309, 321 (1995); D. García, R.A. Jiménez, J. Solá, W. Hollik, Nucl. Phys. B 427, 53 (1994); J.A. Coarasa et al., Eur. Phys. J. C 2, 373 (1998); A. Djouadi et al., Eur. Phys. J. C 1, 149 (1998) 9. T. Inami, C.S. Lim, A. Yamada, Mod. Phys. Lett. A 7, 2789 (1992) 10. For a recent work on the large µ limit see, J.L. Diaz-Cruz, Phys. Rev. D 56, 523 (1997) 11. H. Haber, Higgs bosons in the Minimal Supersymmetric Model: The influence of radiative corrections. (UC, Santa Cruz). SCIPP-92/31, Published in Perspectives on Higgs Physics, World Scientific Publ., (1992) pp. 79-125 12. M. Carena, M. Quirós, C.E.M.Wagner, Nucl. Phys. B 461, 407 (1996) 13. H. Haber, Non-Minimal Higgs Sectors: The Decoupling Limit and its Phenomenological Implications,. Talk presented at the Workshop on Physics from the Planck Scale to the Electroweak Scale, (SUSY 94), Warsaw, Poland, 21-24/Sept. 94, hep-ph/9501320; P. Ciafaloni and D. Espriu, Phys. Rev. D 56, 1752 (1997); A. Djouadi et al., PM/96-39, KA-TP-30-1996, hep-ph/9701342, (Z. Phys. C to appear) 14. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975) 15. M. Bohm, H. Spiesberger, W. Hollik, Fortschr. Phys. 34, 11, 687, 751 (1986) 16. M. Veltman, Act. Phys. Pol. B 8, 475 (1977); Nucl. Phys. B 123, 89 (1977); D.R.T. Jones, M. Veltman, Nucl. Phys. B 19, 146 (1981); M. Chanowitz, M. Furman, I. Hinchli _e, Phys. Lett. B 78, 285 (1978); Nucl. Phys. B 153, 402 (1979) 17. G. Lin, H. Steger, Y. Yao Phys. Rev. D 49, 2414 (1994); F. Feruglio, L. Maiani, A. Masiero, Nucl. Phys. B 387, 523 (1992) 18. T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980); A.C. Longhitano, Nucl. Phys. B 188, 118 (1981); Phys. Rev. D 22, 1166 (1980); M.J. Herrero, E.R. Morales Nucl. Phys. B 418, 431 (1994); Nucl. Phys. B 437, 319 (1995); D. Espriu, J. Matias, Phys. Lett. B 341, 332 (1995); S. Dittmaier, C. Grosse-Knetter, Phys. Rev. D 52, 7276(1995); Nucl. Phys. B 459, 497 (1996) 19. For an introduction to the subject of integration of heavy fields, computation of effective actions see, for instance, A. Dobado et al., Effective Lagrangians for the Standard Model, Springer-Verlag, (1997) 20. L. Ibañez, G.G. Ross, Phys. Lett. B 10, 227 (1982); K. Inoue et al., Prog. Theor. Phys. 67, 1859 (1982); L. Alvarez-Gaumé, J. Polchinsky, M. Wise, Nucl. Phys. B 221, 495 (1983); J. Ellis et al., Phys. Lett. B 125, 275 (1983); L. Ibañez, C. López, Phys.Lett. B 126, 54 (1983); Nucl. Phys. B 233, 511 (1984); L. Ibañez, C. López, C. Muñoz, Nucl. Phys. B 256, 218 (1985) 21. A. Dobado, M.J. Herrero, S. Peñaranda, in preparation 22. A. Dobado, M.J. Herrero, S.Peñaranda, \The SM as the quantum low energy effective theory of the MSSM", FTUAM 98/8 23. G. Giavarini, C.P. Martin, F. Ruiz Ruiz, Nucl. Phys. B 381, 222 (1992) 24. An exact diagonalization in the charginos and neutralinos sector can be found in: M.M. El Kheishen, A.A. Sha_k, A.A. Aboshousha, Phys. Rev. D 45, 4345 (1992); An approximate diagonalization can be found in: J.F. Gunion, H.E. Haber, Phys. Rev. D 37, 2515 (1988); B. Grinstein, J. Polchinski, M.B. Wise, Phys. Lett. B 130, 285 (1983) 25. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990); Phys. Rev. D 46, 381 (1992)