Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Superluminal and slow light in Lambda-type three-level atoms via squeezed vacuum and spontaneously generated coherence

dc.contributor.authorCarreño Sánchez, Fernando
dc.contributor.authorGómez Calderón, Óscar
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.contributor.authorGonzalo Fonrodona, Isabel
dc.date.accessioned2023-06-20T10:51:40Z
dc.date.available2023-06-20T10:51:40Z
dc.date.issued2005-06-15
dc.description©2005 The American Physical Society. This work was supported by Project Nos. PR3/04-12458 (U.C.M., Spain) and FIS2004-03267 (M.E.C, Spain).
dc.description.abstractWe study the dispersion and absorption spectra of a weak probe in a Delta-type three-level atomic system with closely ground sublevels driven by a strong field and damped by a broadband squeezed vacuum. We analyze the interplay between the spontaneous generated coherence and the squeezed field on the susceptibility of the atomic system. We find that by varying the intensity of the squeezed field the group velocity of a weak pulse can change from subluminal to superluminal. In addition we exploit the fact that the properties of the atomic medium can be dramatically modified by controlling the relative phase between the driving field and the squeezed field, allowing us to manipulate the group velocity at which light propagates. The physical origin of this phenomenon corresponds to a transfer of the atomic coherence from electromagnetically induced transparency to electromagnetically induced absorption. Besides, this phenomenon is achieved under nearly transparency conditions and with negligible distortion of the propagation pulse.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29838
dc.identifier.doi10.1103/PhysRevA.71.063805
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.71.063805
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51352
dc.issue.number6
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final063805/11
dc.page.initial063805/1
dc.publisherAmerican Physical Society
dc.relation.projectIDPR3/04-12458
dc.relation.projectIDFIS2004-03267
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLevel atom
dc.subject.keywordAnomalous-dispersion
dc.subject.keywordPropagation
dc.subject.keywordSystem
dc.subject.keywordInversion
dc.subject.keywordField
dc.subject.keywordGain
dc.subject.keywordTransparency
dc.subject.keywordTransitions
dc.subject.keywordRefraction
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSuperluminal and slow light in Lambda-type three-level atoms via squeezed vacuum and spontaneously generated coherence
dc.typejournal article
dc.volume.number71
dcterms.references[1] M. O. Scully, Phys. Rep. 219, 191 (1992). [2] O. Kocharovskaya, Phys. Rep. 219, 175 (1992). [3] J. Mompart and R. Corbalán, J. Opt. B: Quantum Semiclassical Opt. 2, R7 (2000). [4] S. E. Harris, J. E. Field, and A. Imamouglu, Phys. Rev. Lett. 64, 1107 (1990). [5] S. E. Harris and L. V. Hau Phys. Rev. Lett. 82, 4611 (1999). [6] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London) 397, 594 (1999);D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999). [7] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000). [8] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65, 022314 (2002). [9] O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, Phys. Rev. Lett. 86, 628 (1999). [10] C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903 (2003). [11] R. Y. Chiao, Phys. Rev. A 48, R34 (1993);A. M. Steinberg and R. Y. Chiao, ibid. 49, 2071 (1994). [12] L. J. Wang, A. Kuzmich, and A. Dogariu, Nature (London) 407, 277 (2000). [13] A. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999). [14] A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802sRd (1999). [15] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 053818 (2004). [16] A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999). [17] K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, Phys. Rev. A 68, 013810 (2003). [18] G. S. Agarwal, T. N. Dey, and S. Menon, Phys. Rev. A 64, 053809 (2001). [19] W-H. Xu, J-H. Wu, and J-Y. Gao, Laser Phys. Lett. 1, 176 (2004). [20] D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, Phys. Rev. A 63, 043818 (2001). [21] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003). [22] G. S. Agarwal and S. Dasgupta, Phys. Rev. A 70, 023802 (2004). [23] M. S. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, Phys. Rev. A 70, 023813 (2004). [24] H. Kang, L. Wen, and Y. Zhu, Phys. Rev. A 68, 063806 (2003). [25] F. Xiao, H. Guo, L. Li, C. Liu, and X. Chen, Phys. Lett. A 327, 15 (2004). [26] J. Javananien, Europhys. Lett. 17, 407 (1992). [27] X-M. Hu and J.-S. Peng, J. Phys. B 33, 921 (2000). [28] S. Menon and G. S. Agarwal, Phys. Rev. A 57, 4014 (1998). [29] J-H. Wu and J-Y. Gao, Phys. Rev. A 65, 063807 (2002). [30] A. Joshi, W. Yang, and M. Xiao, Phys. Lett. A 315, 203 (2003). [31] J. Evers, D. Bullock, and C. H. Keitel, Opt. Commun. 209, 173 (2002). [32] C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986). [33] Z. Ficek, W. S. Smyth, and S. Swain, Opt. Commun. 110, 555 (1994). [34] M. III Sargent, Phys. Rep., Phys. Lett. 43, 223 (1978). [35] U. Akram, M. R. B. Wahiddin, and Z. Ficek, Phys. Lett. A 238, 117 (1998). [36] Z. Ficek and P. D. Drummond, Phys. Rev. A 43, 6247 (1991); 43, 6258 (1991). [37] Quantum Squeezing, edited by P. D. Drummond and Z. Ficek (Springer-Verlag, Berlin, 2004). [38] G. S. Agarwal, Quantum Optics, Springer Tracts in Modern Physiscs No. 70 (Springer-Verlag, Berlin, 1974). [39] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, London, 1997d; J-S. Peng and L. Gao-Xiang, Introduction to Modern Quantum Optics sWorld Scientific, Singapore, 1998), Chap. 14. [40] M. R. Ferguson, Z. Fizek, and B. J. Dalton, J. Mod. Opt. 42, 679 (1995). [41] M. R. Ferguson, Z. Ficek, and B. J. Dalton, Phys. Rev. A 54, 2379 (1996). [42] C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970). [43] P. R. Rice and L. M. Pedrotti, J. Opt. Soc. Am. B 9, 2008 (1992). [44] P. Zhou and S. Swain, Phys. Rev. Lett. 82, 2500 (1999). [45] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, Phys. Rev. Lett. 75, 3426 (1995). [46] H. Schmidt and A. Imamoglu, Opt. Commun. 131, 333 (1996). [47] Z. Fizek and S. Swain, J. Mod. Opt. 49, 3 (2002). [48] O. Kocharovskaya, A. B. Matsko, and Y. Rostovtsev, Phys. Rev. A 65, 013803 (2001).
dspace.entity.typePublication
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublicatione3951eb6-c03f-4cc1-b643-8450fedd1f67
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublicationc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
relation.isAuthorOfPublication.latestForDiscovery70ad6ca8-0e1b-49d4-a046-8d693ca88c5a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gonzalo,I 06 LIBRE.pdf
Size:
146.37 KB
Format:
Adobe Portable Document Format

Collections