Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Solving inhomogeneous inverse problems by topological derivative methods

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorRapún Banzo, María Luisa
dc.date.accessioned2023-06-20T09:32:33Z
dc.date.available2023-06-20T09:32:33Z
dc.date.issued2008
dc.description.abstractWe introduce new iterative schemes to reconstruct scatterers buried in a medium and their physical properties. The inverse scattering problem is reformulated as a constrained optimization problem involving transmission boundary value problems in heterogeneous media. Our first step consists in developing a reconstruction scheme assuming that the properties of the objects are known. In a second step, we combine iterations to reconstruct the objects with iterations to recover the material parameters. This hybrid method provides reasonable guesses of the parameter values and the number of scatterers, their location and size. Our schemes to reconstruct objects knowing their nature rely on an extended notion of topological derivative. Explicit expressions for the topological derivatives of the corresponding shape functionals are computed in general exterior domains. Small objects, shapes with cavities and poorly illuminated obstacles are easily recovered. To improve the predictions of the parameters in the successive guesses of the domains we use a gradient method.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14934
dc.identifier.citationCarpio Rodríguez, A. M., Rapún Banzo, M. L. «Solving inhomogeneous inverse problems by topological derivative methods». Inverse Problems, vol. 24, n.o 4, agosto de 2008, p. 045014. DOI.org (Crossref), https://doi.org/10.1088/0266-5611/24/4/045014.
dc.identifier.doi10.1088/0266-5611/24/4/045014
dc.identifier.issn0266-5611
dc.identifier.officialurlhttps//doi.org/10.1088/0266-5611/24/4/045014
dc.identifier.relatedurlhttp://iopscience.iop.org/0266-5611/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49855
dc.issue.number4
dc.journal.titleInverse problems
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.projectIDMAT2005-05730-C02-02
dc.relation.projectIDMTM-2007-63204
dc.relation.projectIDPR27/05-13939
dc.relation.projectIDCM-910143
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordLevel set methods
dc.subject.keywordTransmission problems
dc.subject.keywordObstacle scattering
dc.subject.keywordHelmotz-equation
dc.subject.keywordShape optimization
dc.subject.keywordIntegral-equations
dc.subject.keywordTomography
dc.subject.keywordUniqueness
dc.subject.keywordReconstruction
dc.subject.keywordApproximation
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSolving inhomogeneous inverse problems by topological derivative methodsen
dc.typejournal article
dc.volume.number24
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication4aa587c2-c91a-40a3-b6ae-d83fb2bcdc56
relation.isAuthorOfPublication.latestForDiscovery4aa587c2-c91a-40a3-b6ae-d83fb2bcdc56

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format

Collections