Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The action of the groups Dm × Dn on unbordered Klein surfaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Etayo Gordejuela, J. J., & Martínez García, E. «The Action of the Groups D m × D n on Unbordered Klein Surfaces». Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 105, n.o 1, marzo de 2011, pp. 97-108. DOI.org (Crossref), https://doi.org/10.1007/s13398-011-0007-9.

Abstract

Every finite group G may act as an automorphism group of Klein surfaces either bordered or unbordered either orientable or non-orientable. For each group the minimum genus receives different names according to the topological features of the surface X on which it acts. If X is a bordered surface the genus is called the real genus ρ(G). If X is a non-orientable unbordered surface the genus is called the symmetric crosscap number of G and it is denoted by [(s)\tilde](G)(G). Finally if X is a Riemann surface it has two related parameters. If G only contains orientation-preserving automorphisms we have the strong symmetric genus, σ 0(G). If we allow orientation-reversing automorphisms we have the symmetric genus σ(G). In this work we obtain the strong symmetric genus and the symmetric crosscap number of the groups D m × D n . The symmetric genus of these groups is 1. However we introduce and obtain a new parameter, denoted by τ as the least genus g ≥ 2 of Riemann surfaces on which these groups act disregarding orientation

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections