Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Triplet pair correlations in s-wave superfluids as a signature of the Fulde-Ferrell-Larkin-Ovchinnikov state

dc.contributor.authorSols Lucía, Fernando
dc.contributor.authorZapata, I.
dc.contributor.authorDemler, E.
dc.date.accessioned2023-06-20T03:43:50Z
dc.date.available2023-06-20T03:43:50Z
dc.date.issued2012-10-09
dc.description© 2012 American Physical Society. We thank R. Hulet and A. Dalgarno for helpful discussions. This work has been supported by MICINN (Spain) through Grants No. FIS2007-65723 and No. FIS2010-21372 Comunidad de Madrid through MICROSERES grant, Army Research Office with funding from the DARPA OLE program, Harvard-MIT CUA, NSF Grant No. DMR-07-05472, AFOSR Quantum Simulation MURI, AFOSR MURI on Ultracold Molecules, and the ARO-MURI on Atomtronics. One of us (I. Z.) acknowledges support from Real Colegio Complutense at Harvard.
dc.description.abstractWe show that antiparallel triplet pairing correlations are generated in superfluids with purely s-wave interactions whenever population imbalance enforces anisotropic Fulde Ferrell (FF) or inhomogeneous Larkin-Ovchinikov (LO) states. These triplet correlations appear in the Cooper pair wave function, while the triplet part of the gap remains zero. The same set of quasiparticle states contributes to the triplet component and to the polarization, thus spatially correlating them. In the LO case, this set forms a narrow band of Andreev states centered on the nodes of the s-wave order parameter. This picture naturally provides a unifying explanation of previous findings that attractive p-wave interaction stabilizes FFLO states. We also study a similar triplet mixing which occurs when a balanced two-component system displays FFLO-type oscillations due to a spin dependent optical lattice. We discuss how this triplet component can be measured in systems of ultracold atoms using a rapid ramp across a p-wave Feshbach resonance. This should provide a smoking gun signature of FFLO states
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipReal Colegio Complutense en Harvard
dc.description.sponsorshipHarvard-MIT CUA
dc.description.sponsorshipArmy Research Office
dc.description.sponsorshipNSF
dc.description.sponsorshipAFOSR Quantum Simulation MURI
dc.description.sponsorshipAFOSR MURI on Ultracold Molecules
dc.description.sponsorshipARO-MURI on Atomtronics
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26482
dc.identifier.doi10.1103/PhysRevLett.109.155304
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.109.155304
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44335
dc.issue.number15
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMICROSERES-CM (S2009/TIC-1476)
dc.relation.projectID(FIS2007-65723)
dc.relation.projectID(FIS2010-21372)
dc.relation.projectID(DMR-07-05472)
dc.relation.projectIDDARPA OLE
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordFeshbach Resonance
dc.subject.keywordFermi gas
dc.subject.keywordSuperconductors
dc.subject.keywordField
dc.subject.ucmFísica de materiales
dc.titleTriplet pair correlations in s-wave superfluids as a signature of the Fulde-Ferrell-Larkin-Ovchinnikov state
dc.typejournal article
dc.volume.number109
dcterms.references[1] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962). [2] A. J. Leggett, Quantum Liquids (Oxford University, New York, 2006). [3] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964). [4] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965). [5] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007). [6] K. Rajagopal and F. Wilczek, arXiv:hep-ph/0011333. [7] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004). [8] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005). [9] L. Radzihovsky and D. E. Sheehy, Rep. Prog. Phys. 73, 076501 (2010). [10] M. Eschrig, Phys. Today 64, 43 (2011). [11] J. M. Edge and N. R. Cooper, Phys. Rev. Lett. 103, 065301 (2009). [12] Y. L. Loh and N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010). [13] J. M. Edge and N. R. Cooper, Phys. Rev. A 81, 063606 (2010). [14] R. M. Lutchyn, M. Dzero, and V. M. Yakovenko, Phys. Rev. A 84, 033609 (2011). [15] Y. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature (London) 467, 567 (2010). [16] A related detection scheme to detect such triplet correlations is the use of photoassociation. R. Hulet (private communication). [17] S. Matsuo, H. Shimahara, and K. Nagai, J. Phys. Soc. Jpn. 63, 2499 (1994). [18] H. Shimahara, Phys. Rev. B 62, 3524 (2000). [19] H. Shimahara, J. Phys. Soc. Jpn. 71, 1644 (2002). [20] K.V. Samokhin and M. S. Mar’enko, Phys. Rev. Lett. 97, 197003 (2006). [21] H. Burkhardt and D. Rainer, Ann. Phys. (Leipzig) 506, 181 (1994). [22] Z. Zheng and D. F. Agterberg, Phys. Rev. B 82, 024506 (2010). [23] O. Dutta and A. G. Lebed, Phys. Rev. B 78, 224504 (2008). [24] I. Zapata, B. Wunsch, N. T. Zinner, and E. Demler, Phys. Rev. Lett. 105, 095301 (2010). [25] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. A 76, 043605 (2007). [26] A. Bulgac, M. McNeilForbes, and A. Schwenk, Phys. Rev. Lett. 97, 020402 (2006). [27] S. Gaudio, J. Jackiewicz, and K. S. Bedell, Philos. Mag. Lett. 87, 713 (2007). [28] A. Bulgac and S. Yoon, Phys. Rev. A 79, 053625 (2009). [29] K. R. Patton and D. E. Sheehy, Phys. Rev. A 83, 051607R (2011). [30] Note that, by construction, the triplet component of the gap is zero, because we have neglected the triplet part of the interaction. This does not preclude, however, the emergence of triplet pair correlations in the Cooper pair wave function. [31] P. G. de Gennes, Superconductivity of Metals and Alloys (Westview, Boulder, 1999). [32] A. B. Vorontsov, J.A. Sauls, and M. J. Graf, Phys. Rev. B 72, 184501 (2005). [33] M. Greiner, C.A. Regal, and D. S. Jin, Nature (London) 426, 537 (2003). [34] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004). [35] M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004). [36] R. B. Diener and T. L. Ho, arXiv:cond-mat/0404517v1. [37] E. Altman and A. Vishwanath, Phys. Rev. Lett. 95, 110404 (2005). [38] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010). [39] H. Moritz, T. Sto¨ferle, K. Gu¨enter, M. Ko¨ hl, and T. Esslinger, Phys. Rev. Lett. 94, 210401 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication6e3dc402-4876-48e1-8419-10b3f44303a5
relation.isAuthorOfPublication.latestForDiscovery6e3dc402-4876-48e1-8419-10b3f44303a5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols, F 08libre.pdf
Size:
240.97 KB
Format:
Adobe Portable Document Format

Collections