Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces

dc.contributor.authorFrechero, M. A.
dc.contributor.authorRocci, Mirko
dc.contributor.authorSánchez Santolino, Gabriel
dc.contributor.authorSalafranca, Juan
dc.contributor.authorSchmidt, Rainer
dc.contributor.authorDíaz Guillén, M. R.
dc.contributor.authorDurá, O. J.
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorVarela Del Arco, María
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorLeón Yebra, Carlos
dc.date.accessioned2023-06-18T06:49:26Z
dc.date.available2023-06-18T06:49:26Z
dc.date.issued2015-12-17
dc.descriptionWe acknowledge financial support by Spanish MICINN through grants MAT2011-27470-C01 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), by CAM through grant S2009/MAT-1756 (Phama) and by the ERC starting Investigator Award, grant #239739 STEMOX. RS wishes to acknowledge the MICINN (Spain) for granting a Ramon y Cajal fellowship. MAF is Research Fellow of CONICET (Argentine). Financial support of CONICET is gratefully acknowledged. OJD acknowledges a postdoctoral fellowship from JCCM. JS acknowledges a Juan de la Cierva fellowship from MICINN (Spain). The authors thank Dr. Hugo Schlich from Mateck GmbH for providing information about the process of bicrystals production, Masashi Watanabe for the Digital Micrograph PCA plug-in and J. Luck for help with specimen preparation, and A. de Andrés for helpful discussion and assistance on experimental matters. Electron microscopy observations at ORNL (SJP, MV) were sponsored by the Materials Sciences and Engineering Division of the U.S. Department of Energy (DOE) and and through the Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, DOE-BES. ESM measurements (SVK, SJ, AK) were performed at the Center for Nanophase Materials Sciences and supported by the Division of Scientific User Facilities of the U.S. Department of Energy (DOE).
dc.description.abstractThe blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipConsolider Ingenio 2010
dc.description.sponsorshipERC starting Investigator Award
dc.description.sponsorshipCONICET
dc.description.sponsorshipJCCM
dc.description.sponsorshipMaterials Sciences and Engineering Division of the U.S. Department of Energy (DOE)
dc.description.sponsorshipCenter for Nanophase Materials Sciences (CNMS)
dc.description.sponsorshipScientific User Facilities Division, DOE-BES
dc.description.sponsorshipDivision of Scientific User Facilities of the U.S. Department of Energy (DOE)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35279
dc.identifier.doi10.1038/srep17229
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/srep17229
dc.identifier.relatedurlhttp://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24312
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature publishing group
dc.relation.projectIDMAT2011-27470-C01
dc.relation.projectIDPHAMA-CM (S2009/MAT-1756)
dc.relation.projectIDCSD2009-00013 (Imagine)
dc.relation.projectIDSTEMOX (#239739)
dc.relation.projectIDRamon y Cajal
dc.relation.projectIDJuan de la Cierva
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu537
dc.subject.keywordYttria-stabilized zirconia
dc.subject.keywordTilt grain-boundaries
dc.subject.keywordSpace-charge
dc.subject.keywordThin-films
dc.subject.keywordConductivity
dc.subject.keywordEnergy
dc.subject.keywordOxide
dc.subject.keywordElectrolytes
dc.subject.keywordConductors
dc.subject.keywordNanoscale.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titlePaving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces
dc.typejournal article
dc.volume.number5
dcterms.references1. Steele, B. C. H., Heinzel, A. Materials for fuel-cell technologies, Nature, 414, 345–352 (2001). 2. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater., 4, 366–377 (2005). 3. Maier, J., Nanoionics: ion transport and electrochemical storage in confined systems Nature Mater., 4, 805–815 (2005). 4. Litzelman, S. J., Hertz, J. L., Jung, W., Tuller, H. L., Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells, 8, 294–302 (2008). 5. Sata, N., Eberman, K., Eberl, K., Maier, J., Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, 408, 946–949 (2000). 6. Waser, R., Aono, M., Nanoionics-based resistive switching memories, Nature Mater., 6, 833–840 (2007). 7. Ramanathan, S., Interface-mediated ultrafast carrier conduction in oxide thin films and superlattices for energy, J. Vac. Sci. Technol. A, 27, 1126 (2009). 8. Kim, S., Yamaguchi S., Elliott, J. A., Solid-State Ionics in the 21st Century: Current Status and Future Prospects, MRS Bulletin, 34, 900–905 (2009). 9. Pergolesi, D., et al., High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition, Nature Mater., 9, 846–852 (2010). 10. Balke, N., et al., Nanoscale mapping of ion diffusion in a lithium-ion battery cathode, Nature Nanotech., 5, 749–754 (2010). 11. Hayashi, A., Noi, K., Sakuda, A., Tatsumisago, M., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun., 3, 856 (2012). doi: 10.1038/ncomms1843. 12. Guo, X., Waser, R., Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog. Mat. Sci., 51, 151–210 (2006), and references therein. 13. Debye, P., Hückel, E., Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physik. Z., 24, 185–206 (1923). 14. Moreno, K. J., et al., Cooperative oxygen ion dynamics in Gd2Ti2−yZryO7. Phys. Rev. B, 71, 132301 (2005). 15. Tschöpe, A., Kilassonia, S., Birringer, R., The grain boundary effect in heavily doped cerium oxide. Solid State Ionics, 173, 57–61 (2004). 16. Kim, S., Fleig, J., Maier, J., Space charge conduction: Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria, Phys. Chem. Chem. Phys., 5, 2268–2273 (2003). 17. Kosacki, I., Rouleaub, C. M., Bechera, P. F., Bentleya, J., Lowndes, D. H., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 176, 1319–1326 (2005). 18. Peters, A., Korte, C., Hesseb, D., Zakharovb, N., Janek, J., Ionic conductivity and activation energy for oxygen ion transport in superlattices — The multilayer system CSZ (ZrO2+CaO)/Al2O3. Solid State Ionics, 178, 67–76 (2007). 19. García-Barriocanal, J., et al., Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science, 321, 676–680 (2008). 20. Kilner, J. A., Ionic conductors: Feel the Strain, Nature Mater., 7, 838–839 (2008). 21. García-Barriocanal, J., et al., Tailoring Disorder and Dimensionality: Strategies for Improved Solid Oxide Fuel Cell Electrolytes. Chem. Phys. Chem, 10, 1003–1011 (2009). 22. T. J. Pennycook, et al., Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder, Phys. Rev. Lett., 104, 115901 (2010). 23. De Souza, R. A., et al., Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries, Phys. Chem. Chem. Phys., 10, 2067–2072 (2008). 24. Yan, Y., et al., Impurity-induced structural transformation of a MgO grain boundary, Phys. Rev. Lett., 81, 3675 (1998). 25. Shibata, N., et al., Atomic-scale imaging of individual dopant atoms in a buried interface, Nature Mater., 8, 654–658 (2009). 26. Sato, Y., et al., Role of Pr segregation in acceptor-state formation at ZnO grain boundaries, Phys. Rev. Lett., 97, 106802 (2006). 27. Klie, R. F., et al., Enhanced current transport at grain boundaries in high-Tc superconductors. Nature, 435, 475–478 (2005). 28. Wang, Z., et al., Atom-resolved imaging of ordered defect superstructures at individual grain boundaries, Nature, 479, 380–383 (2011). 29. Dickey, E. C., Fan X., Pennycook, S. J., Structure and Chemistry of Yttria-Stabilized Cubic-Zirconia Symmetric Tilt Grain Boundaries, J. Am. Ceram. Soc., 84, 1361–1368 (2001). 30. Lei, Y., et al., Segregation Effects at Grain Boundaries in Fluorite-Structured Ceramics, J. Am. Ceram. Soc., 85, 2359–2363 (2002). 31. Shibata, N., Yamamoto, T., Ikuhara, Y., Sakuma, T., Structure of [110] tilt grain boundaries in zirconia bicrystals, J. Electron Microsc., 50, 429–433 (2001). 32. Ross, I. M., et al., Electron energy-loss spectroscopy (EELS) studies of an yttria stabilized TZP ceramic, J. Eur. Ceram. Soc., 24, 2023–2029 (2004). 33. Kim, M., et al., Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3, Phys. Rev. Lett., 86, 4056–4059 (2001). 34. Kliewer, K. L., Koehler, J. S., Space Charge in Ionic Crystals. I. General Approach with Application to NaCl, Phys. Rev. A, 140, 1226–1240 (1965). 35. Verkerk, M. J., Middelhuis, B. J., Burggraaf, A. J., Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics, Solid State Ionics, 6, 159–170 (1982). 36. Maier, J., Ionic conduction in space charge regions. Prog. Solid St. Chem., 23, 171–263 (1995). 37. Rivera, A., Santamaría, J., León, C., Electrical conductivity relaxation in thin-film yttria-stabilized zirconia, Appl. Phys. Lett., 78, 610–612 (2001). 38. Durá, O. J., et al., Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys. Rev. B, 81, 184301 (2010). 39. Frechero, M. A., et al., “Caracterización eléctrica de fronteras de grano en conductores iónicos mediante medidas de espectroscopia de impedancias en un bicristal”. Bol. Soc. Esp. Ceram. V., 51, 7 (2012). 40. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V., Jesse, S., Measuring oxygen reduction/evolution reactions on the nanoscale, Nature Chem., 3, 707–713 (2011). 41. Morozovska, A. N., Eliseev, E. A., Balke, N., Kalinin, S. V., Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms, J. Appl. Phys., 108, 053712 (2010). 42. Jesse, S., Kalinin, S. V., Band excitation in scanning probe microscopy: sines of change, J. Phys. D-Appl. Phys., 44, 464006 (2011). 43. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P., Rodríguez, B. J., The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale, Nanotechnology, 18, 435503 (2007). 44. Kalinin, S. V., Bonnell, D. A., Surface potential at surface-interface junctions in SrTiO3 bicrystals, Phys. Rev. B, 62, 10419–10430 (2000).
dspace.entity.typePublication
relation.isAuthorOfPublication3ea619be-11c2-4a85-a759-62adf0de8be7
relation.isAuthorOfPublication4d468566-fa66-4e1c-8463-382517edca6e
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication.latestForDiscovery3ea619be-11c2-4a85-a759-62adf0de8be7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC145 libre + CC.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format

Collections