Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mazur intersection properties and differentiability of convex functions in Banach spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

London Mathematical Sociey
Citations
Google Scholar

Citation

Georgiev, P. G., Suárez Granero, A., Moreno, J. P. & Jiménez Sevilla, M. M. «Mazur Intersection Properties and Differentiability of Convex Functions in Banach Spaces». Journal of the London Mathematical Society, vol. 61, n.o 2, abril de 2000, pp. 531-42. DOI.org (Crossref), https://doi.org/10.1112/S0024610799008625.

Abstract

It is proved that the dual of a Banach space with the Mazur intersection property is almost weak* Asplund. Analogously, the predual of a dual space with the weak* Mazur intersection property is almost Asplund. Through the use of these arguments, it is found that, in particular, almost all (in the Baire sense) equivalent norms on [script l]1(Γ) and [script l][infty infinity](Γ) are Fréchet differentiable on a dense Gδ subset. Necessary conditions for Mazur intersection properties in terms of convex sets satisfying a Krein–Milman type condition are also discussed. It is also shown that, if a Banach space has the Mazur intersection property, then every subspace of countable codimension can be equivalently renormed to satisfy this property.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections