Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

dc.contributor.authorAranda, V. M.
dc.contributor.authorArqueros Martínez, Fernando
dc.contributor.authorGarcía Pinto, Diego
dc.contributor.authorMinaya Flores, Ignacio Andrés
dc.contributor.authorRosado, J.
dc.contributor.authorVázquez Peñas, José Ramón
dc.date.accessioned2023-06-19T13:32:03Z
dc.date.available2023-06-19T13:32:03Z
dc.date.issued2014
dc.description© 2014 American Physical Society. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por más de 400 autores. The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6, No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project no. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, U.K.; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
dc.description.abstractWe report a study of the distributions of the depth of maximum, X-max, of extensive air-shower profiles with energies above 10(17.8) eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the X-max measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the X-max distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipComision Nacional de Energia Atomica
dc.description.sponsorshipFundacion Antorchas
dc.description.sponsorshipGobierno De La Provincia de Mendoza
dc.description.sponsorshipMunicipalidad de Malargue
dc.description.sponsorshipNDM Holdings
dc.description.sponsorshipValle Las Lenas
dc.description.sponsorshipAustralian Research Council
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
dc.description.sponsorshipFinanciadora de Estudos e Projetos (FINEP)
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ)
dc.description.sponsorshipSao Paulo Research Foundation (FAPESP)
dc.description.sponsorshipMinisterio de Ciencia e Tecnologia (MCT), Brazil
dc.description.sponsorshipCzech Science Foundation, Czech Republic
dc.description.sponsorshipCentre de Calcul IN2P3/CNRS
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS)
dc.description.sponsorshipConseil Regional Ile-de-France
dc.description.sponsorshipDepartement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS)
dc.description.sponsorshipDepartement Sciences de l'Univers (SDU-INSU/CNRS)
dc.description.sponsorshipInstitut Lagrange de Paris
dc.description.sponsorshipILP LABEX within the Investissements d'Avenir Programme, France
dc.description.sponsorshipBundesministerium fur Bildung und Forschung (BMBF)
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)
dc.description.sponsorshipFinanzministerium Baden-Wurttemberg
dc.description.sponsorshipHelmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)
dc.description.sponsorshipMinisterium fur Wissenschaft und Forschung
dc.description.sponsorshipMinisterium fur Wissenschaft
dc.description.sponsorshipNordrhein Westfalen
dc.description.sponsorshipForschung und Kunst
dc.description.sponsorshipBaden-Wurttemberg, Germany
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN)
dc.description.sponsorshipMinistero dell'Istruzione, dell'Universita e della Ricerca (MIUR)
dc.description.sponsorshipGran Sasso Center for Astroparticle Physics (CFA)
dc.description.sponsorshipCETEMPS Center of Excellence, Italy
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
dc.description.sponsorshipMinisterie van Onderwijs, Cultuur en Wetenschap
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
dc.description.sponsorshipStichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands
dc.description.sponsorshipNational Centre for Research and Development
dc.description.sponsorshipNational Science Centre, Poland
dc.description.sponsorshipPortuguese national funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal
dc.description.sponsorshipFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal
dc.description.sponsorshipRomanian Authority for Scientific Research ANCS
dc.description.sponsorshipCNDI-UEFISCDI
dc.description.sponsorshipMinister of National Education, Programme for research - Space Technology and Advanced Research - STAR, Romania
dc.description.sponsorshipSlovenian Research Agency, Slovenia
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipFEDER funds
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.sponsorshipXunta de Galicia
dc.description.sponsorshipScience and Technology Facilities Council, U.K.
dc.description.sponsorshipDepartment of Energy
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipGrainger Foundation, USA
dc.description.sponsorshipNAFOSTED, Vietnam
dc.description.sponsorshipMarie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program
dc.description.sponsorshipUNESCO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29422
dc.identifier.citation1. J. Linsley, Proc. 8th ICRC 4, 77 (1963). 2. A. M. Hillas, J. Phys. G 31, R95 (2005). 3. D. Allard, E. Parizot, and A. V. Olinto, Astropart. Phys. 27, 61 (2007). 4. R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov, S. Grigorieva, and B. Hnatyk, Astropart. Phys. 27, 76 (2007). 5. R. U. Abbasi et al. (HiRes Collaboration), Phys. Rev. Lett. 100, 101101 (2008). 6. J. Abraham et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 101, 061101 (2008). 7. T. Abu-Zayyad et al. (TA Collaboration), Astrophys. J. 768, L1 (2013). 8. K. Greisen, Phys. Rev. Lett. 16, 748 (1966). 9. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966). 10. B. Peters, Nuovo Cimento 22, 800 (1961). 11. D. Allard, N. G. Busca, G. Decerprit, A. V. Olinto, and E. Parizot, J. Cosmol. Astropart. Phys. 10 (2008) 033. 12. R. Aloisio, V. Berezinsky, and A. Gazizov, Astropart. Phys. 34, 620 (2011). 13. D. Hooper and A. M. Taylor, Astropart. Phys. 33, 151 (2010). 14. K. Fang, K. Kotera, and A. V. Olinto, J. Cosmol. Astropart. Phys. 03 (2013) 010. 15. K.-H. Kampert and M. Unger, Astropart. Phys. 35, 660 (2012). 16. K. Greisen, Annu. Rev. Nucl. Sci. 10, 63 (1960). 17. J. Linsley, Proc. 15th ICRC 12, 89 (1977). 18. T. K. Gaisser, T. J. K. McComb, and K. E. Turver, Proc. 16th ICRC 9, 258 (1979). 19. J. Linsley and A. A. Watson, Phys. Rev. Lett. 46, 459 (1981). 20. J. Linsley, Proc. 18th ICRC 12, 135 (1983). 21. J. Linsley, Proc. 19th ICRC 6, 1 (1985). 22. J. Engel, T. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 46, 5013 (1992). 23. J. Matthews, Astropart. Phys. 22, 387 (2005). 24. R. Ulrich, R. Engel, and M. Unger, Phys. Rev. D 83, 054026 (2011). 25. R. D. Parsons, C. Bleve, S. S. Ostapchenko, and J. Knapp, Astropart. Phys. 34, 832 (2011). 26. R. Engel, D. Heck, and T. Pierog, Annu. Rev. Nucl. Part. Sci. 61, 467 (2011). 27. P. Abreu et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 109, 062002 (2012). 28. J. W. Belz et al. (FLASH Collaboration), Astropart. Phys. 25, 129 (2006). 29. M. Ave et al. (AIRFLY Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 597, 41 (2008). 30. G. L. Cassiday et al. (Fly’s Eye Collaboration), Astrophys. J. 356, 669 (1990). 31. R. U. Abbasi et al. (HiRes Collaboration), Astrophys. J. 622, 910 (2005). 32. R. U. Abbasi et al. (HiRes Collaboration), Phys. Rev. Lett. 104, 161101 (2010). 33. J. Abraham et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 104, 091101 (2010). 34. G. Cowan, Conf. Proc. C0203181, 248 (2002). 35. J. Abraham et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 523, 50 (2004). 36. I. Allekotte et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 586, 409 (2008). 37. J. Abraham et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 620, 227 (2010). 38. F. Sanchez et al. (Pierre Auger Collaboration), Proc. 32nd ICRC 3, 145 (2011). 39. H. J. Mathes et al. (Pierre Auger Collaboration), Proc. 32nd ICRC 3, 149 (2011). 40. A. Aab et al. (Pierre Auger Collaboration) (to be published). 41. J. T. Brack, R. Meyhandan, G. J. Hofman, and J. Matthews, Astropart. Phys. 20, 653 (2004). 42. A. C. Rovero, P. Bauleo, J. T. Brack, J. L. Harton, and R. Knapik, Astropart. Phys. 31, 305 (2009). 43. J. T. Brack, R. Cope, A. Dorofeev, B. Gookin, J. L. Harton, Y. Petrov, and A. C. Rovero, JINST 8, P05014 (2013). 44. NOAA Air Resources Laboratory (ARL), Global Data Assimilation System (GDAS1) Archive, Information, Tech. Rep., 2004, http://ready.arl.noaa.gov/gdas1.php. 45. P. Abreu et al. (Pierre Auger Collaboration), Astropart. Phys. 35, 591 (2012). 46. J. Abraham et al. (Pierre Auger Collaboration), Astropart. Phys. 33, 108 (2010). 47. B. Fick, M. Malek, J. A. J. Matthews, J. Matthews, R. Meyhandan, M. Mostafá, M. Roberts, P. Sommers, and L. Wiencke, JINST 1, P11003 (2006). 48. P. Abreu et al. (Pierre Auger Collaboration), JINST 8, P04009 (2013). 49. S. Y. BenZvi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 574, 171 (2007). 50. J. Chirinos et al. (Pierre Auger Collaboration), arXiv:1307.5059. 51. GOES Project Science, http://goes.gsfc.nasa.gov. 52. P. Abreu et al. (Pierre Auger Collaboration), Astropart. Phys. 50–52, 92 (2013). 53. S. Argiro, S. L. C. Barroso, J. Gonzalez, L. Nellen, T. Paul, T. A. Porter, L. Prado Jr., M. Roth, R. Ulrich, and D. Veberič, Nucl. Instrum. Methods Phys. Res., Sect. A 580, 1485 (2007). 54. L. G. Porter, J. C. Earnshaw, E. Tielsch-Cassel, J. C. Ahlstrom, and K. Greisen, Nucl. Instrum. Methods 87, 87 (1970). 55. P. Sommers, Astropart. Phys. 3, 349 (1995). 56. B. R. Dawson, H. Y. Dai, P. Sommers, and S. Yoshida, Astropart. Phys. 5, 239 (1996). 57. C. Bonifazi et al. (Pierre Auger Collaboration), Proc. 29th ICRC 7, 17 (2005). 58. D. Gora, R. Engel, D. Heck, P. Homola, H. Klages, J. Pe¸kala, M. Risse, B. Wilczyńska, and H. Wilczyński, Astropart. Phys. 24, 484 (2006). 59. M. Giller and G. Wieczorek, Astropart. Phys. 31, 212 (2009). 60. J. Bäuml et al. (Pierre Auger Collaboration), arXiv:1307.5059. 61. V. Verzi et al. (Pierre Auger Collaboration), arXiv:1307.5059. 62. M. Roberts, J. Phys. G 31, 1291 (2005). 63. J. Pe¸kala, P. Homola, B. Wilczyńska, and H. Wilczyński, Nucl. Instrum. Methods Phys. Res., Sect. A 605, 388 (2009). 64. M. Giller and A. Smialkowski, Astropart. Phys. 36, 166 (2012). 65. M. Giller, G. Wieczorek, A. Kacperczyk, H. Stojek, and W. Tkaczyk, J. Phys. G 30, 97 (2004). 66. A. M. Hillas, J. Phys. G 8, 1461 (1982). 67. F. Nerling, J. Blümer, R. Engel, and M. Risse, Astropart. Phys. 24, 421 (2006). 68. S. Lafebre, R. Engel, H. Falcke, J. Hörandel, T. Huege, J. Kuijpers, and R. Ulrich, Astropart. Phys. 31, 243 (2009). 69. M. Unger, B. R. Dawson, R. Engel, F. Schüssler, and R. Ulrich, Nucl. Instrum. Methods Phys. Res., Sect. A 588, 433 (2008). 70. M. Ave et al. (AIRFLY Collaboration), Astropart. Phys. 28, 41 (2007). 71. M. Ave et al. (AIRFLY Collaboration), Astropart. Phys. 42, 90 (2013). 72. T. K. Gaisser and A. M. Hillas, Proc. 15th ICRC 8, 353 (1977). 73. M. J. Tueros et al. (Pierre Auger Collaboration), arXiv:1307.5059. 74. P. Abreu et al. (Pierre Auger Collaboration), Astropart. Phys. 34, 368 (2011). 75. P. Abreu et al. (Pierre Auger Collaboration), Astropart. Phys. 35, 266 (2011). 76. C. T. Peixoto, V. de Souza, and J. Bellido, Astropart. Phys. 47, 18 (2013). 77. S. Andringa, R. Conceicao, and M. Pimenta, Astropart. Phys. 34, 360 (2011). 78. T. Pierog, EPJ Web Conf. 52, 03001 (2013). 79. L. Prado Jr., B. R. Dawson, S. Petrera, R. C. Shellard, M. G. do Amaral, R. Caruso, R. Sato, and J. A. Bellido, Nucl. Instrum. Methods Phys. Res., Sect. A 545, 632 (2005). 80. T. Bergmann, R. Engel, D. Heck, N. Kalmykov, S. Ostapchenko, T. Pierog, T. Thouw, and K. Werner, Astropart. Phys. 26, 420 (2007). 81. E. J. Ahn, R. Engel, T. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 80, 094003 (2009). 82. P. A. Sadowski et al. (HiRes Collaboration), Astropart. Phys. 18, 237 (2002). 83. L. Valore et al. (Pierre Auger Collaboration), arXiv:1307.5059. 84. R. Ulrich, J Blümer, R. Engel, F. Schüssler, and M. Unger, New J. Phys. 11, 065018 (2009). 85. R. M. Baltrusaitis, G. Cassiday, J. Elbert, P. Gerhardy, S. Ko, E. Loh, Y. Mizumoto, P. Sokolsky, and D. Steck, Phys. Rev. Lett. 52, 1380 (1984). 86. A. Höcker and V. Kartvelishvili, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996). 87. G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995). 88. A. N. Tihonov, Dokl. Akad. Nauk SSSR 151, 501 (1963). 89. A. Aab et al. (Pierre Auger Collaboration), http://www.auger.org/data/xmax2014.tar.gz. 90. P. Allison et al. (Pierre Auger Collaboration), Proc. 29th ICRC 8, 307 (2005). 91. T. Abu-Zayyad et al. (HiRes Collaboration), Astropart. Phys. 16, 1 (2001). 92. M. Giller et al., Proc. 29th ICRC 7, 187 (2005). 93. K. Louedec and J. Colombi, Astropart. Phys. 57–58, 6 (2014). 94. A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D 90, 122006 (2014). 95. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011). 96. S. Ostapchenko, Proc. 32nd ICRC 2, 71 (2011). 97. T. Pierog and K. Werner, Phys. Rev. Lett. 101, 171101 (2008). 98. T. Pierog et al., arXiv:1306.0121. 99. D. d’Enterria, R. Engel, T. Pierog, S. Ostapchenko, and K. Werner, Astropart. Phys. 35, 98 (2011). 100. P. Abreu et al. (Pierre Auger Collaboration), J. Cosmol. Astropart. Phys. 02 (2013) 026. 101. E. J. Ahn et al. (Pierre Auger Collaboration), arXiv:1307.5059. 102. E. Barcikowski, J. Bellido, J. Belz, Y. Egorov, S. Knurenko, V. de Souza, Y. Tameda, Y. Tsunesada and M. Unger (for the HiRes, Pierre Auger, TA and Yakutsk Collaborations), EPJ Web Conf. 53, 01006 (2013).
dc.identifier.doi10.1103/PhysRevD.90.122005
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.90.122005
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33957
dc.issue.number12
dc.journal.titlePhysical review D
dc.language.isoeng
dc.page.final1
dc.page.initial122005
dc.publisherAmerican Physical Society
dc.relation.projectIDPEOPLE-2012-IEF-(328826)
dc.relation.projectIDPIRSES-2009-GA (246806)
dc.relation.projectID14-17501S
dc.relation.projectID2010/07359-6
dc.relation.projectID1999/05404-3
dc.relation.projectIDERA-NET-ASPERA/01/11
dc.relation.projectIDANR-10-LABX-63
dc.relation.projectIDANR-11-IDEX-0004-02
dc.relation.projectID1/ASPERA2/2012 ERA-NET
dc.relation.projectIDERA-NET-ASPERA/02/11
dc.relation.projectID2013/08/M/ST9/00322
dc.relation.projectID2013/08/M/ST9/00728
dc.relation.projectIDHARMONIA 5 - 2013/10/M/ST9/00062
dc.relation.projectID20/2012
dc.relation.projectID194/2012
dc.relation.projectIDPN-II-RU-PD-2011-3-0145-17
dc.relation.projectIDPN-II-RU-PD-2011-3-0062
dc.relation.projectID83/2013
dc.relation.projectIDDE-AC02-07CH11359
dc.relation.projectIDDE-FR02-04ER41300
dc.relation.projectIDDE-FG02-99ER41107
dc.relation.projectIDDE-SC0011689
dc.relation.projectID0450696
dc.relation.projectIDMSMT-CR LG13007
dc.relation.projectID7AMB14AR005
dc.relation.projectIDCZ.1.05/2.1.00/03.0058
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordUltra-high-energy
dc.subject.keywordCosmic-ray showers
dc.subject.keywordCherenkov light
dc.subject.keywordFluorescence detectors
dc.subject.keywordLongitudinal profiles
dc.subject.keywordPressure-dependence
dc.subject.keywordSurface detector
dc.subject.keywordMass composition
dc.subject.keywordCross-section
dc.subject.keywordlhc data
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleDepth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV
dc.typejournal article
dc.volume.number90
dspace.entity.typePublication
relation.isAuthorOfPublicatione6fd6d50-2946-45a9-a515-273dddff2091
relation.isAuthorOfPublication7c75d106-b698-42ee-bfea-fe4a2b11b7f8
relation.isAuthorOfPublication.latestForDiscoverye6fd6d50-2946-45a9-a515-273dddff2091
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ArquerosMtnez 02 LIBRE.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Collections