Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Norm-attaining polynomials and differentiability.

dc.contributor.authorFerrera Cuesta, Juan
dc.date.accessioned2023-06-20T16:51:23Z
dc.date.available2023-06-20T16:51:23Z
dc.date.issued2002
dc.description.abstractWe give a polynomial version of Shmul'yan's Test, characterizing the polynomials that strongly attain their norm as those at which the norm is Frechet differentiable: We also characterize the Gateaux differentiability of the norm. Finally we study those properties for some classical Banach spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15248
dc.identifier.doi10.4064/sm151-1-1
dc.identifier.issn0039-3223
dc.identifier.relatedurlhttp://journals.impan.gov.pl/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57243
dc.issue.number1
dc.journal.titleStudia Mathematica
dc.language.isoeng
dc.page.final21
dc.page.initial1
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordBanach spaces
dc.subject.keywordPolynomials
dc.subject.keywordNorm differentiability
dc.subject.keywordShmul'yans's test
dc.subject.keywordStrongly attains its norm
dc.subject.keywordFréchet differentiability
dc.subject.keywordGâteaux differentiability
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleNorm-attaining polynomials and differentiability.
dc.typejournal article
dc.volume.number151
dcterms.referencesM. D. Acosta, F. Aguirre and R. Payá, There is no bilinear Bishop-Phelps theorem, Israel J. Math. 93 (1996), 221–227. R. Alencar, R. M. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407–411. R. M. Aron, Compact polynomials and compact differentiable mappings between Banach spaces, in: Sém. P. Lelong 1974/75, Lecture Notes in Math. 524, Springer, 1976, 213–222. R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3–24. R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n -linear forms, in: Function Spaces (Edwardsville, 1994), Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1995, 19–28. C. Benítez, Y. Sarantopoulos and A. Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), 395–408. Y. S. Choi and S. G. Kim, Polynomial properties of Banach spaces, J. Math. Anal. Appl. 190 (1995), 203–210. Y. S. Choi, S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147. A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math. 64, Longman, 1993. J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984. S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer, London, 1999. S. Dineen, A Dvoretzky theorem for polynomials, Proc. Amer. Math. Soc. 123 (1995), 2817–2821. J. Ferrera, J. Gómez and J. G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc. 15 (1983), 260–264. J. Gutiérrez, J. Jaramillo and J. G. Llavona, Polynomials and geometry of Banach spaces, Extracta Math. 10 (1995), 79–114. J. Jaramillo, A. Prieto and I. Zalduendo, The bidual of the space of polynomials on a Banach space, Math. Proc. Cambridge Philos. Soc. 122 (1997), 457–471. J. Llavona, Approximation of Continuously Differentiable Functions, North-Holland Math. Stud. 130, North-Holland, 1986. J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, 1986. R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 373–379. C. Stegall, Optimization and differentiation in Banach spaces, Linear Algebra Appl. 84 (1986), 191–211
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ferrera100.pdf
Size:
184.17 KB
Format:
Adobe Portable Document Format

Collections