On the spectra of rings of semialgebraic functions
dc.contributor.author | Fernando Galván, José Francisco | |
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.date.accessioned | 2023-06-20T00:16:44Z | |
dc.date.available | 2023-06-20T00:16:44Z | |
dc.date.issued | 2012 | |
dc.description.abstract | In this article we study the most significant algebraic, topological and functorial properties of the Zariski and maximal spectra of rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | GAAR Español | |
dc.description.sponsorship | Proyecto Santander-Complutense | |
dc.description.sponsorship | GAAR Grupos UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16469 | |
dc.identifier.doi | http://dx.doi.org10.1007/s13348-011-0041-0 | |
dc.identifier.issn | 0010-0757 | |
dc.identifier.officialurl | http://www.springerlink.com/content/403403218426u17m/fulltext.pdf | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42319 | |
dc.issue.number | 3 | |
dc.journal.title | Collectanea mathematica | |
dc.language.iso | eng | |
dc.page.final | 331 | |
dc.page.initial | 299 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2008-00272 | |
dc.relation.projectID | PR34/07-15813 | |
dc.relation.projectID | 910444 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Semialgebraic function | |
dc.subject.keyword | Semialgebraic set | |
dc.subject.keyword | Zariski spectrum | |
dc.subject.keyword | Real spectrum | |
dc.subject.keyword | Maximal spectrum | |
dc.subject.keyword | Functoriality | |
dc.subject.keyword | Local compactness | |
dc.subject.keyword | Pieces | |
dc.subject.keyword | Semialgebraic depth | |
dc.subject.keyword | z-ideal | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | On the spectra of rings of semialgebraic functions | |
dc.type | journal article | |
dc.volume.number | 63 | |
dcterms.references | Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergeb. Math., vol. 36. Springer, Berlin (1998) Bourbaki, N.: General Topology, chapters 1–4. Elements of Mathematics. Springer, Berlin (1989) Birkhoff G., Pierce R.S.: Lattice-ordered rings. An. Acad. Brasil. Ci. 28, 41–69 (1956) Cherlin G.-L., Dickmann M.A.: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126(2), 147–183 (1986) Cherlin G.-L., Dickmann M.A.: Real closed rings. II. Model theory. Ann. Pure Appl. Log. 25(3), 213–231 (1983) Delfs H., Knebusch M.: Separation, retractions and homotopy extension in semialgebraic spaces. Pac. J. Math. 114(1), 47–71 (1984) Fernando, J.F.: On chains of prime ideals in rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/chains.pdf (preprint RAAG, 2010) Fernando, J.F.: On distinguished points of the remainder of the semialgebraic Stone–Čech compactification of a semialgebraic set. http://www.mat.ucm.es/~josefer/pdfs/preprint/remainder.pdf (preprint RAAG, 2010) Fernando, J.F.: On the fibers of semialgebraic spectral maps. http://www.mat.ucm.es/~josefer/pdfs/preprint/fibers.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On Łojasiewicz’s inequality and the Nullstellensatz for rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/null-loj.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On the Krull dimension of rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/dim.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On Banach-Stone type theorems in the semialgebraic setting. http://www.mat.ucm.es/~josefer/pdfs/preprint/homeo.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On the semialgebraic Stone–Čech compactification of a semialgebraic set. Transactions of AMS. http://www.ams.org/cgi-bin/mstrack/accepted_papers?jrnl=tran (2010, accepted) Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Nathematics, vol. 1. D. Van Nostrand Company, Inc., Princeton (1960) De Marco G., Orsatti A.: Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Am. Math. Soc. 30(3), 459–466 (1971) Schwartz, N.: Real closed spaces. Ordered fields and real algebraic geometry (Boulder, Colo., 1983). Rocky Mt. J. Math. 14(4), 971–972 (1984) Schwartz, N.: The basic theory of real closed spaces. Mem. Am. Math. Soc. 77(397) (1989) Stasica J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1