Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the spectra of rings of semialgebraic functions

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-20T00:16:44Z
dc.date.available2023-06-20T00:16:44Z
dc.date.issued2012
dc.description.abstractIn this article we study the most significant algebraic, topological and functorial properties of the Zariski and maximal spectra of rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGAAR Español
dc.description.sponsorshipProyecto Santander-Complutense
dc.description.sponsorshipGAAR Grupos UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16469
dc.identifier.doihttp://dx.doi.org10.1007/s13348-011-0041-0
dc.identifier.issn0010-0757
dc.identifier.officialurlhttp://www.springerlink.com/content/403403218426u17m/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42319
dc.issue.number3
dc.journal.titleCollectanea mathematica
dc.language.isoeng
dc.page.final331
dc.page.initial299
dc.publisherSpringer
dc.relation.projectIDMTM2008-00272
dc.relation.projectIDPR34/07-15813
dc.relation.projectID910444
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordSemialgebraic function
dc.subject.keywordSemialgebraic set
dc.subject.keywordZariski spectrum
dc.subject.keywordReal spectrum
dc.subject.keywordMaximal spectrum
dc.subject.keywordFunctoriality
dc.subject.keywordLocal compactness
dc.subject.keywordPieces
dc.subject.keywordSemialgebraic depth
dc.subject.keywordz-ideal
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn the spectra of rings of semialgebraic functions
dc.typejournal article
dc.volume.number63
dcterms.referencesBochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergeb. Math., vol. 36. Springer, Berlin (1998) Bourbaki, N.: General Topology, chapters 1–4. Elements of Mathematics. Springer, Berlin (1989) Birkhoff G., Pierce R.S.: Lattice-ordered rings. An. Acad. Brasil. Ci. 28, 41–69 (1956) Cherlin G.-L., Dickmann M.A.: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126(2), 147–183 (1986) Cherlin G.-L., Dickmann M.A.: Real closed rings. II. Model theory. Ann. Pure Appl. Log. 25(3), 213–231 (1983) Delfs H., Knebusch M.: Separation, retractions and homotopy extension in semialgebraic spaces. Pac. J. Math. 114(1), 47–71 (1984) Fernando, J.F.: On chains of prime ideals in rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/chains.pdf (preprint RAAG, 2010) Fernando, J.F.: On distinguished points of the remainder of the semialgebraic Stone–Čech compactification of a semialgebraic set. http://www.mat.ucm.es/~josefer/pdfs/preprint/remainder.pdf (preprint RAAG, 2010) Fernando, J.F.: On the fibers of semialgebraic spectral maps. http://www.mat.ucm.es/~josefer/pdfs/preprint/fibers.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On Łojasiewicz’s inequality and the Nullstellensatz for rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/null-loj.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On the Krull dimension of rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/dim.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On Banach-Stone type theorems in the semialgebraic setting. http://www.mat.ucm.es/~josefer/pdfs/preprint/homeo.pdf (preprint RAAG, 2010) Fernando, J.F., Gamboa, J.M.: On the semialgebraic Stone–Čech compactification of a semialgebraic set. Transactions of AMS. http://www.ams.org/cgi-bin/mstrack/accepted_papers?jrnl=tran (2010, accepted) Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Nathematics, vol. 1. D. Van Nostrand Company, Inc., Princeton (1960) De Marco G., Orsatti A.: Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Am. Math. Soc. 30(3), 459–466 (1971) Schwartz, N.: Real closed spaces. Ordered fields and real algebraic geometry (Boulder, Colo., 1983). Rocky Mt. J. Math. 14(4), 971–972 (1984) Schwartz, N.: The basic theory of real closed spaces. Mem. Am. Math. Soc. 77(397) (1989) Stasica J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003)
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernando100.pdf
Size:
492.28 KB
Format:
Adobe Portable Document Format

Collections