On Banach-Spaces Of Vector-Valued Continuous-Functions
dc.contributor.author | Cembranos, Pilar | |
dc.date.accessioned | 2023-06-21T02:01:34Z | |
dc.date.available | 2023-06-21T02:01:34Z | |
dc.date.issued | 1983 | |
dc.description.abstract | Let K tie a compact Hausdorff space and let E be a Banach Space. We denote by C(K, E) the Banach space of all E-valued Continuous functions defined on K , endowed with the supremum Norm. Recently, Talagrand [Israel J. Math. 44 (1983), 317-321] Constructed a Banach space E having the Dunford-Pettis property Such that C([0, l ] , E) fails to have the Dunford-Pettis property. So he answered negatively a question which was posed some years ago. We prove in this paper that for a large class of compacts K (the scattered compacts), C(K, E) has either the Dunford-Pettis Property, or the reciprocal Dunford-Pettis property, or the Dieudonne property, or property V if and only if E has the Same property. Also some properties of the operators defined on C(K, E) are Studied. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14976 | |
dc.identifier.doi | 10.1017/S0004972700020852 | |
dc.identifier.issn | 0004-9727 | |
dc.identifier.officialurl | http://journals.cambridge.org/download.php?file=%2FBAZ%2FBAZ28_02%2FS0004972700020852a.pdf&code=2d96bd78 | |
dc.identifier.relatedurl | http://journals.cambridge.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64615 | |
dc.issue.number | 2 | |
dc.journal.title | Bulletin Of The Australian Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 186 | |
dc.page.initial | 175 | |
dc.publisher | Australian Mathematics Publ | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.986.6 | |
dc.subject.keyword | Mathematics | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On Banach-Spaces Of Vector-Valued Continuous-Functions | |
dc.type | journal article | |
dc.volume.number | 28 | |
dcterms.references | [1] Jurgen Batt and E. Jeffrey Berg, "Linear bounded transformations on the space of continuous functions", J. Funct. Anal. 4 (1969), 215-239. [2] J. Diestel and J . J . UhI, J r . , Vector measures (Mathematical Surveys, 15. American Mathematical Society, Providence, Rhode Island, 1977). [3] Ivan Dobrakov, "On representation of linear operators on CAT, X) ", Czechoslovak Math. J. 21 (96) (1971), 13-30. [4] A. Grothendieck, "Sur l e s applications lineaires faiblement compactes d'espaces du type C(K) ", Canad. J. Math. 5 (1953), 129-173. [5] John Horvath, Topological vector spaces and distributions, Volume I (Addison-Wesley, Reading, Massachusetts; Palo Alto; London; 1966). [6] Joram Lindenstrauss, Lior Tzafriri, Classical Banach spaces. 1. Sequence spaces (Ergebnisse der Mathematik und ihrer Grenzgebiete, 92. Springer-Verlag, Berlin, Heidelberg, New York, 1977. [7] A. Pelczynski, "Banach spaces on which every unconditionally converging operator is weakly compact", Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 61»1-6U8. [8] Zbigniew Semadeni, Banach spaces of continuous functions (Monografie Matematyczne, 55. PWH - Polish Scientific Publishers, Warszawa, 1971). [9] M. Talagrand, "La propriete de Dunford-Pettis dans C{K, E) et LX(E) ", Israel J. Math. 44 (1983), 317-321. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1