Room temperature photo-response of titanium supersaturated silicon at energies over the bandgap

dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorLópez, E.
dc.contributor.authorAntolín, E.
dc.contributor.authorMartí, A.
dc.contributor.authorLuque Uria, Álvaro
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorPastor, D.
dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorGonzález Díaz, Germán
dc.date.accessioned2023-06-18T06:56:45Z
dc.date.available2023-06-18T06:56:45Z
dc.date.issued2016-02-10
dc.description© 2016 IOP Publishing Ltd. The authors would like to acknowledge the C A I de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations, the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements and Dr J P González García from CIEMAT for reflectance measurements. Research by E García-Hemme was supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J Olea acknowledges financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402), under which this research was undertaken. D Pastor acknowledges the financial support to the grant EX-2010-0662 from the Spanish Science Ministry. This work was partially supported by the Spanish MINECO (Economic and Competitiviness Ministery) through grant TEC 2013-41730-R. The authors acknowledge the financial support from la Comunidad de Madrid throughout the funding of the project, MADRID-PV (S2013/MAE-2780).
dc.description.abstractSilicon samples were implanted with high Ti doses and subsequently processed with the pulsed-laser melting technique. The electronic transport properties in the 15–300 K range and the room temperature spectral photoresponse at energies over the bandgap were measured. Samples with Ti concentration below the insulator-metal (I-M) transition limit showed a progressive reduction of the carrier lifetime in the implanted layer as Ti dose is increased. However, when the Ti concentration exceeded this limit, an extraordinary recovery of the photoresponse was measured. This result supports the theory of intermediate band materials and is of utmost relevance for photovoltaic cells and Si-based detectors.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipCampus de Excelencia Internacional Moncloa UCM-UPM
dc.description.sponsorshipPICATA Programa Internacional de Captación de Talento Convocatorias Campus Moncloa
dc.description.sponsorshipAyudas para contratos Juan de la Cierva (MICINN)
dc.description.sponsorshipMinisterio de Ciencia y Tecnología (MCYT), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39343
dc.identifier.doi10.1088/0022-3727/49/5/055103
dc.identifier.issn0022-3727
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0022-3727/49/5/055103
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24643
dc.issue.number5
dc.journal.titleJournal of physics D: applied physics
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDJCI-2011-10402
dc.relation.projectIDMADRID-PV (S2013/MAE-2780)
dc.relation.projectIDEX-2010-0662
dc.relation.projectIDTEC 2013-41730-R
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu537
dc.subject.keywordSilicon
dc.subject.keywordSupersaturated
dc.subject.keywordTitanium
dc.subject.keywordPhotoresponse
dc.subject.ucmElectricidad
dc.subject.ucmElectromagnetismo
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2202 Electromagnetismo
dc.titleRoom temperature photo-response of titanium supersaturated silicon at energies over the bandgap
dc.typejournal article
dc.volume.number49
dcterms.references1.- Luque A, Marti A and Stanley C 2012 Understanding intermediate-band solar cells Nat. Photonics 6 146–52. 2.- Silvestre S et al 2013 Sub-bandgap external quantum efficiency in Ti implanted Si heterojunction with intrinsic thin layer cells Japan. J. Appl. Phys. 52 122302. 3.- Mailoa J P et al 2014 Room-temperature sub-band gap optoelectronic response of hyperdoped silicon Nat. Commun. 5 3011. 4.- Garcia-Hemme E, Garcia-Hernansanz R, Olea J, Pastor D, del Prado A, Martil I and Gonzalez-Diaz G 2012 Sub-bandgap spectral photo-response analysis of Ti supersaturated Si Appl. Phys. Lett. 101 192101. 5.- Dong X, Li N, Zhu Z, Shao H, Rong X, Liang C, Sun H, Feng G, Zhao L and Zhuang J 2014 A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation Appl. Phys. Lett. 104 091907. 6.- Olea J, del Prado A, Pastor D, Martil I and Gonzalez-Diaz G 2011 Sub-bandgap absorption in Ti implanted Si over the Mott limit J. Appl. Phys. 109 113541. 7.- Simmons C B, Akey A J, Mailoa J P, Recht D, Aziz M J and Buonassisi T 2014 Enhancing the infrared photoresponse of silicon by controlling the Fermi level location within an impurity band Adv. Funct. Mater. 24 2852–8. 8.- European Technology Platform Photonics21 2013 Photonics PPP Multi Annual Roadmap Towards 2020—Photonics Driving Economic Growth in Europe (Düsseldorf: Photonics21) pp 77–81 9.- Luque A and Marti A 1997 Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels Phys. Rev. Lett. 78 5014–7. 10.- Luque A, Marti A, Antolin E and Tablero C 2006 Intermediate bands versus levels in non-radiative recombination Physica B 382 320–7. 11.- Krich J J, Halperin B I and Aspuru-Guzik A 2012 Nonradiative lifetimes in intermediate band photovoltaics-Absence of lifetime recovery J. Appl. Phys. 112 013707. 12.- Antolin E, Marti A, Olea J, Pastor D, Gonzalez-Diaz G, Martil I and Luque A 2009 Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material Appl. Phys. Lett. 94 042115. 13.- Pastor D, Olea J, del Prado A, Garcia-Hemme E, Garcia-Hernansanz R and Gonzalez-Diaz G 2012 Insulator to metallic transition due to intermediate band formation in Ti-implanted silicon Sol. Energy Mater. Sol. Cells 104 159–64. 14.- Garcia-Hemme E, Garcia-Hernansanz R, Olea J, Pastor D, del Prado A, Martil I and Gonzalez-Diaz G 2013 Far infrared photoconductivity in a silicon based material: vanadium supersaturated silicon Appl. Phys. Lett. 103 032101. 15.- Hu S, Han P, Wang S, Mao X, Li X and Gao L 2012 Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing Semicond. Sci. Technol. 27 102002. 16.- Pastor D, Olea J, del Prado A, García-Hemme E, Mártil I, González-Díaz G, Ibáñez J, Cuscó R and Artús L 2011 UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation Semicond. Sci. Technol. 26 115003. 17.- Green M A 2008 Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients Sol. Energy Mater. Sol. Cells 92 1305–10. 18.- Hocine S and Mathiot D 1988 Titanium diffusion in silicon Appl. Phys. Lett. 53 1269–71. 19.- Mathiot D and Hocine S 1989 Titanium-related deep levels in silicon—a reexamination J. Appl. Phys. 66 5862–7. 20.- Pastor D, Olea J, Muñoz-Martín A, Climent-Font A, Mártil I and González-Díaz G 2012 Interstitial Ti for intermediate band formation in Ti-supersaturated silicon J. Appl. Phys. 112 113514.1–5. 21.- Olea J, Gonzalez-Diaz G, Pastor D, Martil I, Marti A, Antolin E and Luque A 2011 Two-layer Hall effect model for intermediate band Ti-implanted silicon J. Appl. Phys. 109 063718. 22.- Olea J, Pastor D, Garcia-Hemme E, Garcia-Hernansanz R, del Prado A, Martil I and Gonzalez-Diaz G 2012 Low temperature intermediate band metallic behavior in Ti implanted Si Thin Solid Films 520 6614–8. 23.- Rohatgi A, Davis J R, Hopkins R H, Raichoudhury P, McMullin P G and McCormick J R 1980 Effect of titanium, copper and iron on silicon solar-cells Solid-State Electron. 23 415. 24.- See www.engineering.unsw.edu.au/energy-engineering/pc1d-software-for-modelling-a-solar-cell 25.- Fontaine J C, Barthe S, Ponpon J P, Schunck J P and Siffert P 1994 A simple procedure based on the PCD method for determination of recombination lifetime and surface recombination velocity in silicon Meas. Sci. Technol. 5 47–50. 26.- Baek D, Rouvimov S, Kim B, Jo T C and Schroder D K 2005 Surface recombination velocity of silicon wafers by photoluminescence Appl. Phys. Lett. 86 112110. 27.- Stephens A W, Aberle A G and Green M A 1994 Surface recombination velocity measurements at the silicon–silicon dioxide interface by microwave-detected photoconductance decay J. Appl. Phys. 76 363–70. 28.- Olea J, Pastor D, del Prado A, Garcia-Hemme E, Garcia-Hernansanz R, Martil I and Gonzalez-Diaz G 2013 Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si J. Appl. Phys. 114 053110
dspace.entity.typePublication
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication548d1aba-3271-45c1-ac9b-b46279a98d60
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscovery12efa09d-69f7-43d4-8a66-75d05b8fe161

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
González-Díez 04 postp+EMB10_02_17.pdf
Size:
738.55 KB
Format:
Adobe Portable Document Format

Collections