Effective Higgs-quark-quark couplings from a heavy supersymmetric spectrum

Thumbnail Image
Full text at PDC
Publication Date
Herrero, M. J.
Temes, D.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we study the Yukawa Higgs-quark-quark interactions that are generated from radiative corrections of squarks and gluinos, in the minimal supersymmetric standard model. We compute the corrections to the effective action for Higgs and quark fields that are produced by explicit integration in the path integral formalism of all the squarks and gluinos at the one-loop level and order alpha(s). In addition, we consider the limit of nearly degenerate heavy squarks and gluinos, with masses much larger than the electroweak scale, and we derive the effective Lagrangian containing all the relevant new local Higgs-quark-quark interactions. We show that these new interactions do remain nonvanishing, even in the case of infinitely heavy supersymmetric particles and, therefore, we demonstrate explicitly the nondecoupling behavior of squarks and gluinos in Higgs bosons physics. We present the set of new Yukawa couplings and finally derive the corresponding one-loop, order alpha(s), corrections to the Higgs bosons partial decay widths into quarks.
©2002 The American Physical Society. This work has been supported in part by the Spanish Ministerio de Ciencia y Tecnología under projects CICYT FPA 2000-0980, CICYT AEN 97-1693 and PB98-0782.
Unesco subjects
1. For an updated compilation of works, see Proceedings for 5th International Symposium on Radiative Corrections (RADCOR-2000), Carmel, California, 2000. Slides available at 2. H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985). 3. J. F. Gunion and H. E. Haber, Nucl. Phys. B272, 1 (1986); B278, 449 (1986); B402, 567(E) (1993); J. F. Gunion, H. E. Haber, G. Kane, and S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley, Reading, MA, 1990). 4. A. Dabelstein, Nucl. Phys. B456, 25 (1995). 5. J. Guasch, R. A. Jiménez, and J. Solà, Phys. Lett. B 360, 47 (1995). 6. R. A. Jiménez and J. Solà, Phys. Lett. B 389, 53 (1996). 7. J. A. Coarasa, R. A. Jiménez, and J. Solà, Phys. Lett. B 389, 312 (1996). 8. A. Bartl, H. Eberl, K. Hidaka, T. Kon, W. Majerotto, and Y. Yamada, Phys. Lett. B 378, 167 (1996). 9. A. Dobado, M. J. Herrero, and S. Peñaranda, Eur. Phys. J. C 7, 313 (1999); in Barcelona 1997, Quantum Effects in the Minimal Supersymmetric Standard Model, edited by J. Solà (World Scientific, Singapore, 1998), p. 266–286, hep-ph/9711411; Eur. Phys. J. C 12, 673 (2000); 17, 487 (2000). 10.T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975). 11. M. Carena, S. Mrenna, and C. E. M. Wagner, Phys. Rev. D 60, 075010 (1999); 62, 055008 (2000). (12) K. S. Babu and C. Kolda, Phys. Lett. B 451, 77 (1999). 13. M. Carena, D. Garcia, U. Nierste, and C. E. Wagner, Nucl. Phys. B577, 88 (2000). 14. H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, and Y. Yamada, Phys. Rev. D 62, 055006 (2000). 15. F. Borzumati, G. R. Farrar, N. Polonsky, and S. Thomas, Nucl. Phys. B555, 53 (1999). 16. H. E. Haber, M. J. Herrero, H. E. Logan, S. Peñaranda, S. Rigolin, and D. Temes, Phys. Rev. D 63, 055004 (2001). 17. M. J. Herrero, S. Peñaranda, and D. Temes, Phys. Rev. D 64, 115003 (2001). 18. D. Atwood, L. Reina, and A. Soni, Phys. Rev. D 55, 3156 (1997) and references therein. 19. H. E. Haber, M. J. Herrero, H. E. Logan, S. Peñaranda, S. Rigolin, and D. Temes, hep-ph/0102169; invited talk given by M. J. Herrero at the RADCOR-2000 symposium, Carmel, California, 2000. Slides available at 20. M. Carena, H. E. Haber, H. E. Logan, and S. Mrenna, Phys. Rev. D 65, 055005 (2002). 21. M. J. Herrero, invited talk at the XXIX International Meeting on Fundamental Physics, Sitges, Barcelona, Spain, 2001, to appear in the Proceedings, FTUAM/01-11. Slides available at 22. J. Guasch, W. Hollik, and S. Peñaranda, Phys. Lett. B 515, 367 (2001). 23. A. M. Curiel, M. J. Herrero, D. Temes, and J. F. de Troconiz, Phys. Rev. D 65, 075006 (2002). 24. H. E. Haber and Y. Nir, Nucl. Phys. B335, 363 (1990); H. E. Haber, in Proceedings of the U.S.–Polish Workshop, Warsaw, Poland, 1994, edited by P. Nath, T. Taylor, and S. Pokorski (World Scientific, Singapore, 1995), pp. 49–63. 25. H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991); Phys. Rev. D 48, 4280 (1993); Y. Okada, M. Yamaguchi, and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991); Phys. Lett. B 262, 54 (1991); J. Ellis, G. Ridolfi, and F. Zwirner, ibid. 257, 83 (1991); 262, 477 (1991); R. Barbieri and M. Frigeni, ibid. 258, 167 (1991); 258, 395 ~1991!; for an updated study see M. Carena, H. E. Haber, S. Heinemeyer, W. Hollik, C. E. M. Wagner, and G. Weiglein, Nucl. Phys. B580, 29 (2000); J. R. Espinosa and R.-J. Zhang, J. High Energy Phys. 03, 026 (2000); Nucl. Phys. B586, 3 (2000), and references therein. 26. W. Hollik, in Precision Tests of the Standard Electroweak Model, edited by P. Langacker (World Scientific, Singapore, 1995), pp. 37–116.