A Haldane-Shastry spin chain of BCN type in a constant magnetic field
dc.contributor.author | Enciso, Alberto | |
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T10:57:10Z | |
dc.date.available | 2023-06-20T10:57:10Z | |
dc.date.issued | 2005-01 | |
dc.description | ©2004 by A. Enciso, F. Finkel, A. González-López and M.A. Rodríguez. We would like to dedicate this article to Professor Francesco Calogero in his 70th anniversary. This work was partially supported by the DGI under grant no. BFM2002–02646. A.E. acknowledges the financial support of the Spanish MEC through an FPU scholarship. | |
dc.description.abstract | We compute the spectrum of the trigonometric Sutherland spin model of BCN type in the presence of a constant magnetic field. Using Polychronakos's freezing trick, we derive an exact formula for the partition function of its associated Haldane-Shastry spin chain. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI, Spain | |
dc.description.sponsorship | Spanish MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31381 | |
dc.identifier.doi | 10.2991/jnmp.2005.12.s1.21 | |
dc.identifier.issn | 1402-9251 | |
dc.identifier.officialurl | http://dx.doi.org/10.2991/jnmp.2005.12.s1.21 | |
dc.identifier.relatedurl | http://www.tandfonline.com | |
dc.identifier.relatedurl | http://www.researchgate.net/publication/2061884_A_Haldane-Shastry_spin_chain_of_BC_N_type_in_a_constant_magnetic_field/file/79e415106a32fa4d22.pd | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51504 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of nonlinear mathematical physics | |
dc.language.iso | eng | |
dc.page.final | 265 | |
dc.page.initial | 253 | |
dc.publisher | Atlantis Press | |
dc.relation.projectID | BFM2002–02646 | |
dc.relation.projectID | FPU scholarship | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | A Haldane-Shastry spin chain of BCN type in a constant magnetic field | |
dc.type | journal article | |
dc.volume.number | 12 | |
dcterms.references | [1] Azuma H and Iso S, Explicit relation of the quantum Hall effect and the Calogero– Sutherland model, Phys. Lett. B331 (1994), 107–113. [2] Basu-Mallick B, Spin-dependent extension of Calogero–Sutherland model through anyon-like representations of permutation operators, Nucl. Phys., B482 (1996), 713– 730. [3] Bernard D, Gaudin M, Haldane F D M and Pasquier V, Yang–Baxter equation in long-range interacting systems, J. Phys. A: Math. Gen. 26 (1993), 5219–5236. [4] Bernard D, Pasquier V and Serban D, Exact solution of long-range interacting spin chains with boundaries, Europhys. Lett. 30 (1995), 301–306. [5] Brink L, Turbiner A and Wyllard N, Hidden algebras of the (super)Calogero and Sutherland models, J. Math. Phys. 39 (1998), 1285–1315. [6] Calogero F, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419–436. [7] Caudrelier V and Crampé N, Integrable N-particle Hamiltonians with Yangian or reflection algebra symmetry, J. Phys. A: Math. Gen. 37 (2004), 6285–6298. [8] Desrosiers P, Lapointe L and Mathieu P, Supersymmetric Calogero–Moser– Sutherland models and Jack superpolynomials, Nucl. Phys. B606 (2001), 547–582. [9] Dunkl C F, Orthogonal polynomials of types A and B and related Calogero models, Commun. Math. Phys. 197 (1998), 451–487. [10] Enciso A, Finkel F, González-López A and Rodríguez M A, Haldane–Shastry spin chains of CN type, hep-th/0406054, Nucl. Phys. B, in press. [11] Finkel F, G´omez-Ullate D, González-López A, Rodríguez M A and Zhdanov R, AN – type Dunkl operators and new spin Calogero–Sutherland models, Commun. Math. Phys. 221 (2001), 477–497. [12] Finkel F, Gómez-Ullate D, González-López A, Rodríguez M A and Zhdanov R, New spin Calogero–Sutherland models related to BN -type Dunkl operators, Nucl. Phys. B613 (2001), 472–496. [13] Finkel F, Gómez-Ullate D, González-L´opez A, Rodríguez M A and Zhdanov R, On the Sutherland model of BN type and its associated spin chain, Commun. Math. Phys. 233 (2003), 191–209. [14] Fowler M and Minahan A, Invariants of the Haldane–Shastry SU(N) chain, Phys. Rev. Lett. 70 (1993), 2325–2328. [15] Ghosh P K, Super-Calogero–Moser–Sutherland systems and free super-oscillators: a mapping, Nucl. Phys. B595 (2001), 519–535. [16] Gibbons J and Hermsen T, A generalisation of the Calogero–Moser system, Physica 11D (1984), 337–348. [17] Gorsky A and Nekrasov N, Hamiltonian systems of Calogero type, and 2-dimensional Yang–Mills theory, Nucl. Phys. B414 (1994), 213–238. [18] Ha Z N C, Exact dynamical correlation functions of Calogero–Sutherland model and one- dimensional fractional statistics, Phys. Rev. Lett. 73 (1994), 1574–1577. [19] Haldane F D M, Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-1/2 antiferromagnetic Heisenberg chain with 1/r^2 exchange, Phys. Rev. Lett. 60 (1998), 635–638. [20] Olshanetsky M A and Perelomov A M, Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), 313–404. [21] Polychronakos A P, Non-relativistic bosonization and fractional statistics, Nucl. Phys. B324 (1989), 597–622. [22] Polychronakos A P, Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett. 69 (1992), 703–705. [23] Polychronakos A P, Lattice integrable systems of Haldane–Shastry type, Phys. Rev. Lett. 70 (1993), 2329–2331. [24] Polychronakos A P, Exact spectrum of SU_(n) spin chain with inverse-square exchange, Nucl. Phys. B419 (1994), 553–566. [25] Shastry B S, Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with long- ranged interactions, Phys. Rev. Lett. 60 (1988), 639–642. [26] Simons B D, Lee P A and Altshuler B L, Matrix models, one-dimensional fermions, and quantum chaos, Phys. Rev. Lett. 72 (1994), 64–67. [27] Sutherland B, Exact results for a quantum many-body problem in one dimension, Phys. Rev. A 4 (1971), 2019–2021. [28] Taniguchi N, Shastry B S and Altshuler B L, Random matrix model and the Calogero– Sutherland model: A novel current-density mapping, Phys. Rev. Lett. 75 (1995), 3724–3727. [29] Yamamoto T, Multicomponent Calogero model of BN -type confined in a harmonic potential, Phys. Lett. A208 (1995), 293–302. [30] Yamamoto T and Tsuchiya O, Integrable 1/r2 spin chain with reflecting end, J. Phys. A: Math. Gen. 29 (1996), 3977–3984. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1