Extension of bilinear forms from subespaces of L1 -space

dc.contributor.authorCastillo, Jesús M.F.
dc.contributor.authorGarcía, Ricardo
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T19:13:59Z
dc.date.available2023-06-20T19:13:59Z
dc.date.issued2002
dc.description.abstractWe study the extension of bilinear forms from a given subspace of an L1 -space to the whole space. Precisely, an isomorphic embedding j: E → X is said to be (linearly) 2-exact if bilinear forms on E can be (linear and continuously) extended to X through j . We present some necesary and some sufficient conditions for an embedding j: E → X to be 2-exact when X is an L1 -space.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28601
dc.identifier.issn1239-629X
dc.identifier.officialurlhttp://www.acadsci.fi/mathematica/Vol27/castillo.pdf
dc.identifier.relatedurlhttp://www.acadsci.fi/mathematica/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59419
dc.journal.titleAnnales Academiæ Scientiarum Fennicæ Mathematica
dc.language.isoeng
dc.page.final96
dc.page.initial91
dc.publisherAcademia Scientiarum Fennica
dc.relation.projectIDPB97-0377
dc.relation.projectIDPB96-0607
dc.rights.accessRightsopen access
dc.subject.cdu517.982.22
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleExtension of bilinear forms from subespaces of L1 -space
dc.typejournal article
dc.volume.number27
dcterms.references[1] Bourgain, J.: New Classes of Lp -spaces. - Lecture Notes in Math. 889, Springer-Verlag, 1991. [2] Cabello Sanchez, F., and J.M.F. Castillo: Uniform boundedness and twisted sums of Banach spaces. - Preprint. [3] Cabello Sanchez, F., and J.M.F. Castillo: The long homology sequence for quasiBanach spaces, with applications. - Positivity (to appear). [4] Cabello Sanchez, F., J.M.F. Castillo, and R. García: Polynomials on dual isomorphic spaces. - Ark. Mat. 38, 2000, 37–44. [5] Carando, D.: Extendible polynomials on Banach spaces. - J. Math. Anal. Appl. 233, 1999, 359–372. [6] Carando, D., and I. Zalduendo: A Hahn–Banach theorem for integral polynomials. - Proc. Amer. Math. Soc. 127, 1999, 241–250. [7] Castillo, J.M.F., and M. Gonzales: Three-space Problems in Banach Space Theory. - Lecture Notes in Math. 1667, Springer-Verlag, 1997. [8] Castillo, J.M.F., R. García, and R. Gonzalo: Banach spaces in which all multilinear forms are weakly sequentially continuous. - Studia Math. 136, 1999, 121–145. [9] Castillo, J.M.F., R. García, and J.A. Jaramillo: Extension of bilinear forms on Banach spaces. - Proc. Amer. Math. Soc. (to appear). [10] Diestel, J., H. Jarchow, and A. Tonge: Absolutely Summing Operators. - Cambridge Tracts in Math. 43, Cambridge Univ. Press, 1995. [11] Galindo, P., D. García, M. Maestre, and J. Mujica: Extension of multilinear mappings on Banach spaces. - Studia Math. 108, 1994, 55–76. [12] Hilton, E., and K. Stammbach: A Course in Homological Algebra. - Graduate Texts in Math. 4, Springer-Verlag. [13] Kalton, N.: Locally complemented subspaces and Lp - spaces for 0 < p < 1. - Math. Nachr. 115, 1984, 71–97. [14] Kirwan, P., and R. Ryan: Extendiblity of homogeneous polynomials on Banach spaces. - Proc. Amer. Math. Soc. 126, 1998, 1023–1029. [15] Lindenstrauss, J.: On a certain subspace of l1 . - Bull. Polish Acad. Sci. Math. 12, 1964, 539–542. [16] Rosenthal, H.P.: On subspaces of Lp . - Ann. of Math. 97, 1973, 344–373. [17] Zalduendo, I.: Extending polynomials - a survey. - Publ. Dep. Anal. Mat. Univ. Complutense 41.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo108.pdf
Size:
143.71 KB
Format:
Adobe Portable Document Format

Collections