Extension of bilinear forms from subespaces of L1 -space
dc.contributor.author | Castillo, Jesús M.F. | |
dc.contributor.author | García, Ricardo | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T19:13:59Z | |
dc.date.available | 2023-06-20T19:13:59Z | |
dc.date.issued | 2002 | |
dc.description.abstract | We study the extension of bilinear forms from a given subspace of an L1 -space to the whole space. Precisely, an isomorphic embedding j: E → X is said to be (linearly) 2-exact if bilinear forms on E can be (linear and continuously) extended to X through j . We present some necesary and some sufficient conditions for an embedding j: E → X to be 2-exact when X is an L1 -space. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/28601 | |
dc.identifier.issn | 1239-629X | |
dc.identifier.officialurl | http://www.acadsci.fi/mathematica/Vol27/castillo.pdf | |
dc.identifier.relatedurl | http://www.acadsci.fi/mathematica/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59419 | |
dc.journal.title | Annales Academiæ Scientiarum Fennicæ Mathematica | |
dc.language.iso | eng | |
dc.page.final | 96 | |
dc.page.initial | 91 | |
dc.publisher | Academia Scientiarum Fennica | |
dc.relation.projectID | PB97-0377 | |
dc.relation.projectID | PB96-0607 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.982.22 | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Extension of bilinear forms from subespaces of L1 -space | |
dc.type | journal article | |
dc.volume.number | 27 | |
dcterms.references | [1] Bourgain, J.: New Classes of Lp -spaces. - Lecture Notes in Math. 889, Springer-Verlag, 1991. [2] Cabello Sanchez, F., and J.M.F. Castillo: Uniform boundedness and twisted sums of Banach spaces. - Preprint. [3] Cabello Sanchez, F., and J.M.F. Castillo: The long homology sequence for quasiBanach spaces, with applications. - Positivity (to appear). [4] Cabello Sanchez, F., J.M.F. Castillo, and R. García: Polynomials on dual isomorphic spaces. - Ark. Mat. 38, 2000, 37–44. [5] Carando, D.: Extendible polynomials on Banach spaces. - J. Math. Anal. Appl. 233, 1999, 359–372. [6] Carando, D., and I. Zalduendo: A Hahn–Banach theorem for integral polynomials. - Proc. Amer. Math. Soc. 127, 1999, 241–250. [7] Castillo, J.M.F., and M. Gonzales: Three-space Problems in Banach Space Theory. - Lecture Notes in Math. 1667, Springer-Verlag, 1997. [8] Castillo, J.M.F., R. García, and R. Gonzalo: Banach spaces in which all multilinear forms are weakly sequentially continuous. - Studia Math. 136, 1999, 121–145. [9] Castillo, J.M.F., R. García, and J.A. Jaramillo: Extension of bilinear forms on Banach spaces. - Proc. Amer. Math. Soc. (to appear). [10] Diestel, J., H. Jarchow, and A. Tonge: Absolutely Summing Operators. - Cambridge Tracts in Math. 43, Cambridge Univ. Press, 1995. [11] Galindo, P., D. García, M. Maestre, and J. Mujica: Extension of multilinear mappings on Banach spaces. - Studia Math. 108, 1994, 55–76. [12] Hilton, E., and K. Stammbach: A Course in Homological Algebra. - Graduate Texts in Math. 4, Springer-Verlag. [13] Kalton, N.: Locally complemented subspaces and Lp - spaces for 0 < p < 1. - Math. Nachr. 115, 1984, 71–97. [14] Kirwan, P., and R. Ryan: Extendiblity of homogeneous polynomials on Banach spaces. - Proc. Amer. Math. Soc. 126, 1998, 1023–1029. [15] Lindenstrauss, J.: On a certain subspace of l1 . - Bull. Polish Acad. Sci. Math. 12, 1964, 539–542. [16] Rosenthal, H.P.: On subspaces of Lp . - Ann. of Math. 97, 1973, 344–373. [17] Zalduendo, I.: Extending polynomials - a survey. - Publ. Dep. Anal. Mat. Univ. Complutense 41. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1