Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape

dc.contributor.authorGonzález de Alaiza, Pedro
dc.contributor.authorBabushkin, Ihar
dc.contributor.authorBergé, Luc
dc.contributor.authorSkupin, Stephan
dc.contributor.authorCabrera Granado, Eduardo
dc.contributor.authorKöhler, Christian
dc.contributor.authorMörgner, Uwe
dc.contributor.authorHusakou, Anton V.
dc.contributor.authorHerrmann, Jens
dc.date.accessioned2023-06-18T05:42:05Z
dc.date.available2023-06-18T05:42:05Z
dc.date.issued2015-05-06
dc.description© 2015 American Physical Society
dc.description.abstractBroadband ultrashort terahertz (THz) pulses can be produced using plasma generation in a noble gas ionized by femtosecond two-color pulses. Here we demonstrate that, by using multiple-frequency laser pulses, one can obtain a waveform which optimizes the free electron trajectories in such a way that they acquire the largest drift velocity. This allows us to increase the THz conversion efficiency to 2%, an unprecedented performance for THz generation in gases. In addition to the analytical study of THz generation using a local current model, we perform comprehensive 3D simulations accounting for propagation effects which confirm this prediction. Our results show that THz conversion via tunnel ionization can be greatly improved with well-designed multicolor pulses.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipDFG
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40970
dc.identifier.doi10.1103/PhysRevLett.114.183901
dc.identifier.issn0031-9007
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevLett.114.183901
dc.identifier.relatedurlhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.183901
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23092
dc.issue.number18
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.page.initial183901
dc.publisherAmerican Physical Society
dc.relation.projectIDProject No. HU 1593/2-1
dc.rights.accessRightsopen access
dc.subject.cdu537.533.3
dc.subject.cdu535.374
dc.subject.cdu532.59
dc.subject.keywordElectrons
dc.subject.keywordTeraherz waves
dc.subject.keywordLaser
dc.subject.keywordMultiple frequency
dc.subject.keywordIonization
dc.subject.keywordInert gases
dc.subject.ucmOptoelectrónica
dc.subject.ucmÓptica física, óptica cuántica
dc.subject.ucmLáseres
dc.subject.unesco2209.19 Óptica física
dc.subject.unesco2209.10 Láseres
dc.titleBoosting terahertz generation in laser-field ionized gases using a sawtooth wave shape
dc.typejournal article
dc.volume.number114
dcterms.references1. Sensing with Terahertz Radiation, edited by D. Mittleman (Springer, Berlin, 2002). 2. M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich et al., Nat. Phys. 2, 327 (2006). 3. E. Pickwell and V. P. Wallace, J. Phys. D 39, R301 (2006). 4. M. Tonouchi, Nat. Photonics 1, 97 (2007). 5. B. Marx, Laser Focus World 43, 44 (2007). 6. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007). 7. M. C. Hoffmann and J. A. Fülöp, J. Phys. D 44, 083001 (2011). 8. M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, New J. Phys. 15, 025039 (2013). 9. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007). 10. C. Vicario, B. Monoszlai, and C. P. Hauri, Phys. Rev. Lett. 112, 213901 (2014). 11. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000). 12. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 605 (2008). 13. M. Thomson, M. Kreß, T. Löffler, and H. Roskos, Laser Photonics Rev. 1, 349 (2007). 14. I. Babushkin, S. Skupin, and J. Herrmann, Opt. Express 18, 9658 (2010). 15. I. Babushkin, S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, and J. Herrmann, New J. Phys. 13, 123029 (2011). 16. L. Bergé, S. Skupin, C. Köhler, I. Babushkin, and J. Herrmann, Phys. Rev. Lett. 110, 073901 (2013). 17. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004). 18. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett. 30, 2805 (2005). 19. K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577 (2007). 20. K. Reimann, Rep. Prog. Phys. 70, 1597 (2007). 21. E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, and S. Skupin, New J. Phys. 17, 023060 (2015). 22. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, and T. Elsaesser, Phys. Rev. Lett. 105, 053903 (2010). 23. M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, A. Lotti, A. Couairon, F. Légaré, T. Ozaki, D. Faccio, and R. Morandotti, Phys. Rev. Lett. 110, 253901 (2013). 24. A. Debayle, L. Gremillet, L. Bergé, and C. Köhler, Opt. Express 22, 13691 (2014). 25. vf(t) is the velocity of a free electron injected at t=−∞. The free electrons created by the photoionization process acquire different actual velocities, as they are injected at times tn with zero initial momentum. 26. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.183901 for detailed analytical calculations. 27. Note that here we take into account the total current J, without neglecting JA. 28. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, Rep. Prog. Phys. 70, 1633 (2007). 29. L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P. Marangos, Phys. Rev. Lett. 102, 063003 (2009). 30. S. Haessler, T. Balčiunas, G. Fan, G. Andriukaitis, A. Pugžlys, A. Baltuška, T. Witting, R. Squibb, A. Zaïr, J.  W. G. Tisch, J. P. Marangos, and L. E. Chipperfield, Phys. Rev. X 4, 021028 (2014). 31. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004). 32. A. Dalgarno and A. E. Kingston, Proc. R. Soc. A 259, 424 (1960).
dspace.entity.typePublication
relation.isAuthorOfPublicationf63bf5d8-27d6-4a43-876d-a41e00c683bc
relation.isAuthorOfPublication.latestForDiscoveryf63bf5d8-27d6-4a43-876d-a41e00c683bc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevLett.114.183901.pdf
Size:
563.7 KB
Format:
Adobe Portable Document Format

Collections