Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Kinetic Modeling of Dihydroxyacetone Production from Glycerol by Gluconobacter oxydans ATCC 621 Resting Cells: Effect of Fluid Dynamics Conditions

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

Dihydroxyacetone production from glycerol has been studied. Cultures of Gluconobacter oxydans ATCC 621, a promising microorganism that is able to convert glycerol into dihydroxyacetone, has been employed. In this work, the influence of oxygen transport rate and the fluid dynamic conditions have been studied working with resting cells cultures. Several experiments were carried out at two different scales: 250 mL Erlenmeyer flasks and a 2 L stirred tank bioreactor, varying the agitation speed. Product and substrate concentration were determined employing high-performance liquid chromatography. Additionally, oxygen concentration was measured in the runs carried out in stirred tank reactors. Taking into account the results obtained in these experiments, three different behaviors were observed, depending on the mass transfer and chemical reactions rates. For experiments with low stirring speed (below 200 rpm for shake flasks and 300 rpm for reactors), the oxygen transport rate is the controlling step, while at high stirring speed (over 300 rpm in shake flasks and 560 rpm in the bioreactor), the chemical reaction is controlling the overall process rate. In some runs conducted at medium agitation, a mix control was found. All the kinetic models were able to reproduce experimental data and fulfill thermodynamic and statistical criteria, highlighting the importance of the mass transfer rate upon this system.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections