Photopolymerizable organically modified holographic glass with enhanced thickness for spectral filters

Thumbnail Image
Full text at PDC
Publication Date
Villafranca Velasco, Aitor
Cheben, Pavel
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
A novel formulation and synthesis method to overcome the thickness limitations in samples of photopolymerizable glasses with high refractive index species is presented. The reported method allows the recording of volume holographic diffraction gratings in samples of similar to 500 mu m thickness with a high optical quality and low scattering. Holographic grating recording is performed in a single coherent light exposure step, resulting in volume gratings of high optical quality. A holographic notch filter implemented in a 500 mu m thick photopolymerizable glass with a spectral bandwidth below 0.3 nm and an excellent filter extinction ratio of <-27 dB is also demonstrated.
© 2013 American Institute of Physics. We are indebted to F. Del Monte (Institute for Materials Science, Spanish Research Council) for helpful discussions. Financial support from the Spanish Ministry of Science and Innovation (MICINN) under Grant Nos. TEC2008-04105 and TEC2011-23629 is acknowledged.
1. G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999). 2. H. Fujii, S. P. Almeida, and J. E. Dowling, Appl. Opt. 19, 1190 (1980). 3. M. Fleisher, U. Mahlab, and J. Shamir, Appl. Opt. 29, 2091 (1990). 4. M. Quintanilla and A. M. de Frutos, Appl. Opt. 20, 879 (1981). 5. L. Cao and C. Gu, Appl. Opt. 48, 6973 (2009). 6. G. A. Rakuljic and V. Leyva, Opt. Lett. 18, 459 (1993). 7. C. L. Schoen, S. K. Sharma, C. E. Helsley, and H. Owen, Appl. Spectrosc. 47, 305 (1993). 8. C. Moser and F. Havermeyer, Appl. Phys. B 95, 597 (2009). 9. C. Xie, M. A. Dinno, and Y. Li, Opt. Lett. 27, 249 (2002). 10. M. M. Carrabba, K. M. Spencer, C. Rich, and D. Rauh, Appl. Spectrosc. 44, 1558 (1990). 11. M. J. Pelletier and R. C. Reeder, Appl. Spectrosc. 45, 765 (1991). 12. B. Karsten, F. Havermeyer, L. Wenhai, M. Christophe, and D. Psaltis, “ Holographic filtres”, in Photorefractive Materials and Their Applications 3, edited by P. Günter and J.-P. Huignard (Springer, Berlin, 2007), pp. 295–319. 13. G. T. Sincerbox, Current Trends in Optics, edited by J. C. Dainty (Academic, London, 1994), Chap. 14, Vol. 2. 14. R. A. Lessard and G. Manivannan, Proc. SPIE 2405, 2 (1995). 15. P. Cheben, T. Belenguer, A. Nuñez, F. del Monte, and D. Levy, Opt. Lett. 21, 1857 (1996). 16. P. Cheben and M. L. Calvo, Appl. Phys. Lett. 78, 1490 (2001). 17. F. Del Monte, O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, Adv. Mater. 18, 2014 (2006). 18. K. Omura and Y. Tomita, J. Appl. Phys. 107, 023107 (2010). 19. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares, Opt. Express 19, 1516 (2011). 20. M. Haw, Nature 422, 556 (2003). 21. D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995). 22. F. Mok, G. Zhou, and D. Psaltis, “ Holographic read-only memory”, in Holographic Data Storage, edited by H. J. Coufal, D. Psaltis, and G. T. Sincerbox (Springer, Berlin, 2000), pp. 399–407. 23. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969). 24. O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, V. Hevia-Martín, and P. Cheben, Opt. Mem. Neural Networks 18, 21 (2009). 25. O. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, Appl. Phys. Lett. 91, 14115 (2007). 26. A. V. Velasco, M. P. Hernández-Garay, M. L. Calvo, P. Cheben, and F. Del Monte, J. Appl. Phys. 109, 053106 (2011). 27. G. Ramos, A. Alvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, Appl. Opt. 43, 4018 (2004).