Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

k-Gaps: a novel technique for clustering incomplete climatological time series

dc.contributor.authorCarro Calvo, Leopoldo
dc.contributor.authorJaume Santero, Fernando
dc.contributor.authorGarcía Herrera, Ricardo Francisco
dc.contributor.authorSalcedo Sanz, Sancho
dc.date.accessioned2023-06-17T09:04:08Z
dc.date.available2023-06-17T09:04:08Z
dc.date.issued2021-01
dc.description© The Author(s) 2020. This work was supported by the Ministerio de Economía y Competitividad through the PALEOSTRAT (CGL2015-69699-R) and TIN2017-85887-C2-2-P projects. Jaume-Santero was funded by grant BES-2016-077030 from the Ministerio de Economía y Competitividad and the European Social Fund.
dc.description.abstractIn this paper, we show a new clustering technique (k-gaps) aiming to generate a robust regionalization using sparse climate datasets with incomplete information in space and time. Hence, this method provides a new approach to cluster time series of different temporal lengths, using most of the information contained in heterogeneous sets of climate records that, otherwise, would be eliminated during data homogenization procedures. The robustness of the method has been validated with different synthetic datasets, demonstrating that k-gaps performs well with sample-starved datasets and missing climate information for at least 55% of the study period. We show that the algorithm is able to generate a climatically consistent regionalization based on temperature observations similar to those obtained with complete time series, outperforming other clustering methodologies developed to work with fragmentary information. k-Gaps clusters can therefore provide a useful framework for the study of long-term climate trends and the detection of past extreme events at regional scales.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65285
dc.identifier.doi10.1007/s00704-020-03396-w
dc.identifier.issn0177-798X
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s00704-020-03396-w
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8088
dc.issue.number1-2
dc.journal.titleTheoretical and Applied Climatology
dc.language.isoeng
dc.page.final460
dc.page.initial447
dc.publisherSpringer
dc.relation.projectIDPALEOSTRAT (CGL2015-69699-R); TIN2017-85887-C2-2-P; BES-2016-077030
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu52
dc.subject.keywordClustering techniques
dc.subject.keywordClimatological time series
dc.subject.keywordClimate trends
dc.subject.keywordRegional analysis
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titlek-Gaps: a novel technique for clustering incomplete climatological time series
dc.typejournal article
dc.volume.number143
dspace.entity.typePublication
relation.isAuthorOfPublication9c9be664-b48e-4436-931f-060e94153159
relation.isAuthorOfPublication194b877d-c391-483e-9b29-31a99dff0a29
relation.isAuthorOfPublication.latestForDiscovery9c9be664-b48e-4436-931f-060e94153159

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
garciaherrera117libre+CC.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format

Collections