Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Numerical investigation of meso-scale structures using a two fluid model with non-Newtonian closure

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

The idea is based on identifying the physical roles of the solid and fluid stress tensors in the solid phase momentum equation. The tensors are reformulated as a sum of different terms. A comparison with the closure proposed by Marchioro et al. (Int. J. Multiphase flow. 27: 237-276, 2001), leads to a new non-Newtonian closure. The complete model has been tested with two different scenarios. First, we used an initial Taylor-Green base flow for the fluid phase with a highly diluted regime with mass fraction of order one. This case allows for a critical evaluation of the present formulation vs Saffman's 1962. We also considered a base channel flow with solid particles. Different regimes (solid fractions) have been considered. The results are compared vs Agrawal et al. (J. Fluid Mech. 445: 151-185, 2001) in terms of of meso-scale solid structures behaviours. The numerical discretization for both phases is based on a finite volume formulation using a Rusanov scheme for the hyperbolic part of the equations that preserves the positivity of the void fraction.

Research Projects

Organizational Units

Journal Issue

Description

Meeting held Sunday–Tuesday, November 20–22, 2005; Chicago, IL

UCM subjects

Unesco subjects

Keywords