Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Virtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing Ltd
Citations
Google Scholar

Citation

Abstract

Given a semidirect product g = s ⊎ r of semisimple Lie algebras s and solvable algebras r, we construct polynomial operators in the enveloping algebra U(g) of g that commute with r and transform like the generators of s, up to a functional factor that turns out to be a Casimir operator of r. Such operators are said to generate a virtual copy of s in U(g), and allow to compute the Casimir operators of g in closed form, using the classical formulae for the invariants of s. The behavior of virtual copies with respect to contractions of Lie algebras is analyzed. Applications to the class of Hamilton algebras and their inhomogeneous extensions are given.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections