Isotropy theorem for arbitrary-spin cosmological fields

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Iop Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that the energy-momentum tensor of homogeneous fields of arbitrary spin in an expanding universe is always isotropic in average provided the fields remain bounded and evolve rapidly compared to the rate of expansion. An analytic expression for the average equation of state is obtained for Lagrangians with generic power-law kinetic and potential terms. As an example we consider the behavior of a spin-two field in the standard Fierz-Pauli theory of massive gravity. The results can be extended to general space-time geometries for locally inertial observers.
© 2014 IOP Publishing Ltd. This work has been supported by MICINN (Spain) project numbers FIS2011-23000, FPA2011-27853-01 and Consolider Ingenio MULTIDARK CSD2009-00064.
Unesco subjects
[1] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083 [INSPIRE]. [2] A.E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE]. [3] C. Armendariz-Picon, Could dark energy be vector-like?, JCAP 07 (2004) 007 [astro-ph/0405267] [INSPIRE]. [4] C.G. Boehmer and T. Harko, Dark energy as a massive vector field, Eur. Phys. J. C 50 (2007) 423 [gr qc/0701029] [INSPIRE]. [5] J. Beltran Jimenez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005 [arXiv:0801.1486] [INSPIRE]. [6] J. Beltran Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE]. [7] J. Beltran Jimenez and A.L. Maroto, The electromagnetic dark sector, Phys. Lett. B 686 (2010) 175 [arXiv:0903.4672] [INSPIRE]. [8] L.H. Ford, Inflation Driven By A Vector Field, Phys. Rev. D 40 (1989) 967 [INSPIRE]. [9] K. Dimopoulos, Can a vector field be responsible for the curvature perturbation in the Universe?, Phys. Rev. D 74 (2006) 083502 [hep-ph/0607229] [INSPIRE]. [10] A. Golovnev, V. Mukhanov and V. Vanchurin, Vector Inflation, JCAP 06 (2008) 009 [arXiv:0802.2068] [INSPIRE]. [11] T. Koivisto and D.F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP 08 (2008) 021 [arXiv:0805.4229] [INSPIRE]. [12] K. Bamba, S.-’i. Nojiri and S.D. Odintsov, Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity, Phys. Rev. D 77 (2008) 123532 [arXiv:0803.3384] [INSPIRE]. [13] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rept. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE]. [14] K. Yamamoto, M.-a. Watanabe and J. Soda, Inflation with Multi-Vector-Hair: The Fate of Anisotropy, Class. Quant. Grav. 29 (2012) 145008 [arXiv:1201.5309] [INSPIRE]. [15] M.-a. Watanabe, S. Kanno and J. Soda, Inflationary Universe with Anisotropic Hair, Phys. Rev. Lett. 102 (2009) 191302 [arXiv:0902.2833] [INSPIRE]. [16] B. Himmetoglu, C.R. Contaldi and M. Peloso, Instability of anisotropic cosmological solutions supported by vector fields, Phys. Rev. Lett. 102 (2009) 111301 [arXiv:0809.2779] [INSPIRE]. [17] A.E. Gumrukcuoglu, B. Himmetoglu and M. Peloso, Scalar Scalar, Scalar-Tensor and Tensor-Tensor Correlators from Anisotropic Inflation, Phys. Rev. D 81 (2010) 063528 [arXiv:1001.4088] [INSPIRE]. [18] K. Murata and J. Soda, Anisotropic Inflation with Non Abelian Gauge Kinetic Function, JCAP 06 (2011) 037 [arXiv:1103.6164] [INSPIRE]. [19] A. Maleknejad and M.M. Sheikh-Jabbari, Revisiting Cosmic No-Hair Theorem for Inflationary Settings, Phys. Rev. D 85 (2012) 123508 [arXiv:1203.0219] [INSPIRE]. [20] A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: Inflation From Non-Abelian Gauge Fields, Phys. Lett. B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE]. [21] A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian Gauge Field Inflation, Phys. Rev. D 84 (2011) 043515 [arXiv:1102.1932] [INSPIRE]. [22] P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [arXiv:1202.2366] [INSPIRE]. [23] P. Adshead and M. Wyman, Gauge-flation trajectories in Chromo-Natural Inflation, Phys. Rev. D 86 (2012) 043530 [arXiv:1203.2264] [INSPIRE]. [24] K. Yamamoto, Primordial Fluctuations from Inflation with a Triad of Background Gauge Fields, Phys. Rev. D 85 (2012) 123504 [arXiv:1203.1071] [INSPIRE]. [25] M.M. Sheikh-Jabbari, Gauge-flation Vs Chromo-Natural Inflation, Phys. Lett. B 717 (2012) 6 [arXiv:1203.2265] [INSPIRE]. [26] J. Cervero and L. Jacobs, Classical Yang-Mills Fields in a Robertson-walker Universe, Phys. Lett. B 78 (1978) 427 [INSPIRE]. [27] M. Henneaux, Remarks on spacetime symmetries and nonabelian gauge fields, J. Math. Phys. 23 (1982) 830 [INSPIRE]. [28] Y. Hosotani, Exact Solution to the Einstein-Yang-Mills Equation, Phys. Lett. B 147 (1984) 44 [INSPIRE]. [29] D.V. Gal’tsov and M.S. Volkov, Yang-Mills cosmology: Cold matter for a hot universe, Phys. Lett. B 256 (1991) 17 [INSPIRE]. [30] D.V. Gal’tsov, Non-Abelian condensates as alternative for dark energy, arXiv:0901.0115 [INSPIRE]. [31] Y. Zhang, Inflation with quantum Yang-Mills condensate, Phys. Lett. B 340 (1994) 18 [INSPIRE]. [32] Y. Zhang, An Exact solution of a quark field coupled with a Yang-Mills field in de Sitter space, Class. Quant. Grav. 13 (1996) 2145 [INSPIRE]. [33] E. Elizalde, A.J. Lopez-Revelles, S.D. Odintsov and S.Y. Vernov, Cosmological models with Yang-Mills fields, Phys. Atom. Nucl. 76 (2013) 996 [arXiv:1201.4302] [INSPIRE]. [34] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J. Nuñez Jareño, Isotropy theorem for cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE]. [35] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev. D 87 (2013) 043523 [arXiv:1212.3201] [INSPIRE]. [36] F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica 7 (1940) 449. [37] L. Rosenfeld, Sur le tenseur d’impulsion-´energie, Mem. Acad. Roy. Belg. Sci. 18 (1940) 1. [38] C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw-Hill (1980). [39] W. Greiner and J. Reinhardt, Field Quantization, Springer (1996). [40] A. Dobado, A. G´omez-Nicola, A.L. Maroto and J.R. Peláez, Effective Lagrangians for the Standard Model, Springer (1997). [41] S.V. Babak and L.P. Grishchuk, The Energy momentum tensor for the gravitational field, Phys. Rev. D 61 (2000) 024038 [gr-qc/9907027] [INSPIRE]. [42] M.S. Turner, Coherent scalar-field oscillations in an expanding universe, Phys. Rev. D 28 (1983) 6 [INSPIRE]. [43] T. Damour and V.F. Mukhanov, Inflation without slow roll, Phys. Rev. Lett. 80 (1998) 3440 [gr qc/9712061[INSPIRE]. [44] A.R. Liddle and A. Mazumdar, Inflation during oscillations of the inflaton, Phys. Rev. D 58 (1998) 083508 [astro-ph/9806127] [INSPIRE]. [45] T.S. Koivisto and N.J. Nunes, Inflation and dark energy from three-forms, Phys. Rev. D 80 (2009) 103509 [arXiv:0908.0920] [INSPIRE]. [46] F. Berkhahn, S. Hofmann, F. K¨uhnel, P. Moyassari and D. Dietrich, Island of Stability for Consistent Deformations of Einstein’s Gravity, Phys. Rev. Lett. 108 (2012) 131102 [arXiv:1106.3566] [INSPIRE]. [47] S.L. Dubovsky, P.G. Tinyakov and I.I. Tkachev, Massive graviton as a testable cold dark matter candidate, Phys. Rev. Lett. 94 (2005) 181102 [hep-th/0411158] [INSPIRE]. [48] M. Pshirkov, A. Tuntsov and K.A. Postnov, Constraints on the massive graviton dark matter from pulsar timing and precision astrometry, Phys. Rev. Lett. 101 (2008) 261101 [arXiv:0805.1519] [INSPIRE].